|   | 
Details
   web
Records
Author Reig, M.; Valle, J.W.F.; Yamada, M.
Title Light majoron cold dark matter from topological defects and the formation of boson stars Type Journal Article
Year 2019 Publication Journal of Cosmology and Astroparticle Physics Abbreviated Journal J. Cosmol. Astropart. Phys.
Volume (down) 09 Issue 9 Pages 029 - 25pp
Keywords Cosmic strings; domain walls; monopoles; particle physics – cosmology connection; cosmology of theories beyond the SM; cosmological neutrinos
Abstract We show that for a relatively light majoron (<< 100 eV) non-thermal production from topological defects is an efficient production mechanism. Taking the type I seesaw as benchmark scheme, we estimate the primordial majoron abundance and determine the required parameter choices where it can account for the observed cosmological dark matter. The latter is consistent with the scale of unification. Possible direct detection of light majorons with future experiments such as PTOLEMY and the formation of boson stars from the majoron dark matter are also discussed.
Address [Reig, Mario; Valle, Jose W. F.] Univ Valencia, AHEP Grp, Inst Fis Corpuscular, CSIC, Parc Cient Paterna,Catedrat Jose Beltran 2, E-46980 Paterna, Valencia, Spain, Email: mario.reig@ific.uv.es;
Corporate Author Thesis
Publisher Iop Publishing Ltd Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1475-7516 ISBN Medium
Area Expedition Conference
Notes WOS:000487690100005 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 4154
Permanent link to this record
 

 
Author Sierra, D.A.; De Romeri, V.; Rojas, N.
Title CP violating effects in coherent elastic neutrino-nucleus scattering processes Type Journal Article
Year 2019 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.
Volume (down) 09 Issue 9 Pages 069 - 22pp
Keywords Beyond Standard Model; CP violation; Neutrino Physics
Abstract The presence of new neutrino-quark interactions can enhance, deplete or distort the coherent elastic neutrino-nucleus scattering (CEvNS) event rate. The new interactions may involve CP violating phases that can potentially affect these features. Assuming light vector mediators, we study the effects of CP violation on the CEvNS process in the COHERENT sodium-iodine, liquid argon and germanium detectors. We identify a region in parameter space for which the event rate always involves a dip and another one for which this is never the case. We show that the presence of a dip in the event rate spectrum can be used to constraint CP violating effects, in such a way that the larger the detector volume the tighter the constraints. Furthermore, it allows the reconstruction of the effective coupling responsible for the signal with an uncertainty determined by recoil energy resolution. In the region where no dip is present, we find that CP violating parameters can mimic the Standard Model CEvNS prediction or spectra induced by real parameters. We point out that the interpretation of CEvNS data in terms of a light vector mediator should take into account possible CP violating effects. Finally, we stress that our results are qualitatively applicable for CEvNS induced by solar or reactor neutrinos. Thus, the CP violating effects discussed here and their consequences should be taken into account as well in the analysis of data from multi-ton dark matter detectors or experiments such as CONUS, nu-cleus or CONNIE.
Address [Aristizabal Sierra, D.; Rojas, N.] Univ Tecn Federico Santa Maria, Dept Fis, Casilla 110-V,Avda Espana 1680, Valparaiso, Chile, Email: daristizabal@ulg.ac.be;
Corporate Author Thesis
Publisher Springer Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1029-8479 ISBN Medium
Area Expedition Conference
Notes WOS:000490854300001 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 4179
Permanent link to this record
 

 
Author Cottin, G.; Helo, J.C.; Hirsch, M.; Titov, A.; Wang, Z.S.
Title Heavy neutral leptons in effective field theory and the high-luminosity LHC Type Journal Article
Year 2021 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.
Volume (down) 09 Issue 9 Pages 039 - 34pp
Keywords Beyond Standard Model; Effective Field Theories; Neutrino Physics
Abstract Heavy neutral leptons (HNLs) with masses around the electroweak scale are expected to be rather long-lived particles, as a result of the observed smallness of the active neutrino masses. In this work, we study long-lived HNLs in NRSMEFT, a Standard Model (SM) extension with singlet fermions to which we add non-renormalizable operators up to dimension-6. Operators which contain two HNLs can lead to a sizable enhancement of the production cross sections, compared to the minimal case where HNLs are produced only via their mixing with the SM neutrinos. We calculate the expected sensitivities for the ATLAS detector and the future far-detector experiments: AL3X, ANUBIS, CODEX-b, FASER, MATHUSLA, and MoEDAL-MAPP in this setup. The sensitive ranges of the HNL mass and of the active-heavy mixing angle are much larger than those in the minimal case. We study both, Dirac and Majorana, HNLs and discuss how the two cases actually differ phenomenologically, for HNL masses above roughly 100 GeV.
Address [Cottin, Giovanna] Univ Adolfo Ibanez, Fac Artes Liberales, Dept Ciencias, Diagonal Las Torres 2640, Santiago, Chile, Email: giovanna.cottin@uai.cl;
Corporate Author Thesis
Publisher Springer Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1029-8479 ISBN Medium
Area Expedition Conference
Notes WOS:000694840800001 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 4970
Permanent link to this record
 

 
Author Aristizabal Sierra, D.; De Romeri, V.; Papoulias, D.K.
Title Consequences of the Dresden-II reactor data for the weak mixing angle and new physics Type Journal Article
Year 2022 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.
Volume (down) 09 Issue 9 Pages 076 - 22pp
Keywords Electroweak Precision Physics; Neutrino Interactions; Non-Standard Neutrino Properties; Sterile or Heavy Neutrinos
Abstract The Dresden-II reactor experiment has recently reported a suggestive evidence for the observation of coherent elastic neutrino-nucleus scattering, using a germanium detector. Given the low recoil energy threshold, these data are particularly interesting for a low-energy determination of the weak mixing angle and for the study of new physics leading to spectral distortions at low momentum transfer. Using two hypotheses for the quenching factor, we study the impact of the data on: (i) The weak mixing angle at a renormalization scale of similar to 10 MeV, (ii) neutrino generalized interactions with light mediators, (iii) the sterile neutrino dipole portal. The results for the weak mixing angle show a strong dependence on the quenching factor choice. Although still with large uncertainties, the Dresden-II data provide for the first time a determination of sin(2)theta(W) at such scale using coherent elastic neutrino-nucleus scattering data. Tight upper limits are placed on the light vector, scalar and tensor mediator scenarios. Kinematic constraints implied by the reactor anti-neutrino flux and the ionization energy threshold allow the sterile neutrino dipole portal to produce up-scattering events with sterile neutrino masses up to similar to 8 MeV. In this context, we find that limits are also sensitive to the quenching factor choice, but in both cases competitive with those derived from XENON1T data and more stringent that those derived with COHERENT data, in the same sterile neutrino mass range.
Address [Aristizabal Sierra, D.] Univ Tecn Federico Santa Maria, Dept Fis, Casilla 110-V,Avda Espana 1680, Valparaiso, Chile, Email: daristizabal@ulgac.be;
Corporate Author Thesis
Publisher Springer Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1029-8479 ISBN Medium
Area Expedition Conference
Notes WOS:000853339300012 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 5360
Permanent link to this record
 

 
Author D'Eramo, F.; Di Valentino, E.; Giare, W.; Hajkarim, F.; Melchiorri, A.; Mena, O.; Renzi, F.; Yun, S.
Title Cosmological bound on the QCD axion mass, redux Type Journal Article
Year 2022 Publication Journal of Cosmology and Astroparticle Physics Abbreviated Journal J. Cosmol. Astropart. Phys.
Volume (down) 09 Issue 9 Pages 022 - 35pp
Keywords axions; cosmology of theories beyond the SM; cosmological neutrinos; neutrino masses from cosmology
Abstract We revisit the joint constraints in the mixed hot dark matter scenario in which both thermally produced QCD axions and relic neutrinos are present. Upon recomputing the cosmological axion abundance via recent advances in the literature, we improve the state-of-the-art analyses and provide updated bounds on axion and neutrino masses. By avoiding approximate methods, such as the instantaneous decoupling approximation, and limitations due to the limited validity of the perturbative approach in QCD that forced to artificially divide the constraints from the axion-pion and the axion-gluon production channels, we find robust and self-consistent limits. We investigate the two most popular axion frameworks: KSVZ and DFSZ. From Big Bang Nucleosynthesis (BBN) light element abundances data we find for the KSVZ axion Delta N-eff < 0.31 and an axion mass bound m(a) < 0.53 eV (i.e., a bound on the axion decay constant f(a) > 1.07 x 10(7) GeV) both at 95% CL. These BBN bounds are improved to Delta N-eff < 0.14 and m(a) < 0.16 eV (f(a) > 3.56 x 10(7) GeV) if a prior on the baryon energy density from Cosmic Microwave Background (CMB) data is assumed. When instead considering cosmological observations from the CMB temperature, polarization and lensing from the Planck satellite combined with large scale structure data we find Delta N-eff < 0.23, m(a) < 0.28 eV (f(a) > 2.02 x 10(7) GeV) and Sigma m(nu) < 0.16 eV at 95% CL. This corresponds approximately to a factor of 5 improvement in the axion mass bound with respect to the existing limits. Very similar results are obtained for the DFSZ axion. We also forecast upcoming observations from future CMB and galaxy surveys, showing that they could reach percent level errors for m(a) similar to 1 eV.
Address [D'Eramo, Francesco; Hajkarim, Fazlollah; Yun, Seokhoon] Univ Padua, Dipartimento Fis & Astron, Via Marzolo 8, I-35131 Padua, Italy, Email: francesco.deramo@pd.infn.it;
Corporate Author Thesis
Publisher IOP Publishing Ltd Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1475-7516 ISBN Medium
Area Expedition Conference
Notes WOS:000863296000010 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 5383
Permanent link to this record
 

 
Author De La Torre Luque, P.; Gaggero, D.; Grasso, D.; Marinelli, A.
Title Prospects for detection of a galactic diffuse neutrino flux Type Journal Article
Year 2022 Publication Frontiers in Astronomy and Space Sciences Abbreviated Journal Front. Astron. Space Sci.
Volume (down) 9 Issue Pages 1041838 - 9pp
Keywords galactic cosmic rays; cosmic-ray transport; diffuse gamma rays; high energy gamma rays; diffuse neutrinos; galactic plane
Abstract A Galactic cosmic-ray transport model featuring non-homogeneous transport has been developed over the latest years. This setup is aimed at reproducing gamma-ray observations in different regions of the Galaxy (with particular focus on the progressive hardening of the hadronic spectrum in the inner Galaxy) and was shown to be compatible with the very-high-energy gamma-ray diffuse emission recently detected up to PeV energies. In this work, we extend the results previously presented to test the reliability of that model throughout the whole sky. To this aim, we compare our predictions with detailed longitude and latitude profiles of the diffuse gamma-ray emission measured by Fermi-LAT for different energies and compute the expected Galactic nu diffuse emission, comparing it with current limits from the ANTARES collaboration. We emphasize that the possible detection of a Galactic nu component will allow us to break the degeneracy between our model and other scenarios featuring prominent contributions from unresolved sources and TeV halos.
Address [Luque, P. De La Torre] Stockholm Univ, Stockholm, Sweden, Email: pedro.delatorreluque@fysik.su.se;
Corporate Author Thesis
Publisher Frontiers Media Sa Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2296-987x ISBN Medium
Area Expedition Conference
Notes WOS:000884672800001 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 5407
Permanent link to this record
 

 
Author Real, D.; Calvo, D.
Title Silicon Photomultipliers for Neutrino Telescopes Type Journal Article
Year 2023 Publication Universe Abbreviated Journal Universe
Volume (down) 9 Issue 7 Pages 326 - 14pp
Keywords silicon photomultipliers; neutrino telescopes; time to digital converters; electronics acquisition
Abstract Neutrino astronomy has opened a new window to the extreme Universe, entering into a fruitful era built upon the success of neutrino telescopes, which have already given a new step forward in this novel and growing field by the first observation of steady point-like sources already achieved by IceCube. Neutrino telescopes equipped with Silicon PhotoMultipliers (SiPMs) will significantly increase in number, because of their excellent time resolution and the angular resolution, and will be in better condition to detect more steady sources as well as the unexpected. The use of SiPMs represents a challenge to the acquisition electronics because of the fast signals as well as the high levels of dark noise produced by SiPMs. The acquisition electronics need to include a noise rejection scheme by implementing a coincidence filter between channels. This work discusses the advantages and disadvantages of using SiPMs for the next generation of neutrino telescopes, focusing on the possible developments that could help for their adoption in the near future.
Address [Real, Diego; Calvo, David] Univ Valencia, Inst Fis Corpuscular, CSIC, IFIC, C Catedrat Jose Beltran 2, Valencia 46980, Spain, Email: real@ific.uv.es
Corporate Author Thesis
Publisher Mdpi Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes WOS:001038900800001 Approved no
Is ISI yes International Collaboration no
Call Number IFIC @ pastor @ Serial 5593
Permanent link to this record
 

 
Author Fernandez-Martinez, E.; Gonzalez-Lopez, M.; Hernandez-Garcia, J.; Hostert, M.; Lopez-Pavon, J.
Title Effective portals to heavy neutral leptons Type Journal Article
Year 2023 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.
Volume (down) 09 Issue 9 Pages 001 - 45pp
Keywords Neutrino Interactions; Non-Standard Neutrino Properties; Sterile or Heavy Neutrinos
Abstract The existence of right-handed neutrinos, or heavy neutral leptons (HNLs), is strongly motivated by the observation of neutrino masses and mixing. The mass of these new particles could lie below the electroweak scale, making them accessible to lowenergy laboratory experiments. Additional new physics at high energies can mediate new interactions between the Standard Model particles and HNLs, and is most conveniently parametrized by the neutrino Standard Model Effective Field Theory, or nu SMEFT for short. In this work, we consider the dimension six nu SMEFT operators involving one HNL field in the mass range of O(1) MeV < MN < O(100) GeV. By recasting existing experimental limits on the production and decay of new light particles, we constrain the Wilson coefficients and new physics scale of each operator as a function of the HNL mass.
Address [Fernandez-Martinez, Enrique; Gonzalez-Lopez, Manuel] Univ Autonoma Madrid, Inst Fis Teor, Campus Cantoblanco, Madrid 28049, Spain, Email: enrique.fernandez-martinez@uam.es;
Corporate Author Thesis
Publisher Springer Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1029-8479 ISBN Medium
Area Expedition Conference
Notes WOS:001067715500003 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 5697
Permanent link to this record
 

 
Author De Romeri, V.; Giunti, C.; Stuttard, T.; Ternes, C.A.
Title Neutrino oscillation bounds on quantum decoherence Type Journal Article
Year 2023 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.
Volume (down) 09 Issue 9 Pages 097 - 24pp
Keywords Non-Standard Neutrino Properties; Specific BSM Phenomenology; Neutrino Mixing
Abstract We consider quantum-decoherence effects in neutrino oscillation data. Working in the open quantum system framework we adopt a phenomenological approach that allows to parameterize the energy dependence of the decoherence effects. We consider several phenomenological models. We analyze data from the reactor experiments RENO, Daya Bay and KamLAND and from the accelerator experiments NOvA, MINOS/MINOS+ and T2K. We obtain updated constraints on the decoherence parameters quantifying the strength of damping effects, which can be as low as Gamma ij less than or similar to 8 x 10-27 GeV at 90% confidence level in some cases. We also present sensitivities for the future facilities DUNE and JUNO.
Address [De Romeri, Valentina] Univ Valencia, Inst Fis Corpuscular, CSIC, Parc Cientif UV C-Catedrat Jose Beltran 2, E-46980 Paterna, Spain, Email: deromeri@ific.uv.es;
Corporate Author Thesis
Publisher Springer Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1029-8479 ISBN Medium
Area Expedition Conference
Notes WOS:001118948700001 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 5849
Permanent link to this record
 

 
Author Carcamo Hernandez, A.E.; Vishnudath, K.N.; Valle, J.W.F.
Title Linear seesaw mechanism from dark sector Type Journal Article
Year 2023 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.
Volume (down) 09 Issue 9 Pages 046 - 18pp
Keywords Lepton Flavour Violation (charged); Multi-Higgs Models; Neutrino Mixing; Sterile or Heavy Neutrinos
Abstract We propose a minimal model where a dark sector seeds neutrino mass generation radiatively within the linear seesaw mechanism. Neutrino masses are calculable, since treelevel contributions are forbidden by symmetry. They arise from spontaneous lepton number violation by a small Higgs triplet vacuum expectation value. Lepton flavour violating processes e.g. μ-> e gamma can be sizeable, despite the tiny neutrino masses. We comment also on dark-matter and collider implications.
Address [Hernandez, A. E. Carcamo; Vishnudath, K. N.] Univ Tecn Federico Santa Maria, Casilla 110-V, Valparaiso, Chile, Email: antonio.carcamo@usm.cl;
Corporate Author Thesis
Publisher Springer Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1029-8479 ISBN Medium
Area Expedition Conference
Notes WOS:001184730300002 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 5982
Permanent link to this record