toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Barrio, J.; Etxebeste, A.; Lacasta, C.; Muñoz, E.; Oliver, J.F.; Solaz, C.; Llosa, G. doi  openurl
  Title Performance of VATA64HDR16 ASIC for medical physics applications based on continuous crystals and SiPMs Type Journal Article
  Year 2015 Publication Journal of Instrumentation Abbreviated Journal J. Instrum.  
  Volume (down) 10 Issue Pages P12001 - 12pp  
  Keywords Solid state detectors; Photon detectors for UV, visible and IR photons (solid-state) (PIN diodes, APDs, Si-PMTs, G-APDs, CCDs, EBCCDs, EMCCDs etc); Front-end electronics for detector readout; Gamma detectors (scintillators, CZT, HPG, HgI etc)  
  Abstract Detectors based on Silicon Photomultipliers (SiPMs) coupled to continuous crystals are being tested in medical physics applications due to their potential high resolution and sensitivity. To cope with the high granularity required for a very good spatial resolution, SiPM matrices with a large amount of elements are needed. To be able to read the information coming from each individual channel, dedicated ASICs are employed. The VATA64HDR16 ASIC is a 64-channel, charge-sensitive amplifier that converts the collected charge into a proportional current or voltage signal. A complete assessment of the suitability of that ASIC for medical physics applications based on continuous crystals and SiPMs has been carried out. The input charge range is linear from 20 pC up to 55 pC. The energy resolution obtained at 511 keV is 10% FWHM with a LaBr3 crystal and 16% FWHM with a LYSO crystal. A coincidence timing resolution of 24 ns FWHM is obtained with two LYSO crystals.  
  Address [Barrio, J.; Etxebeste, A.; Lacasta, C.; Munoz, E.; Oliver, J. F.; Solaz, C.; Llosa, G.] Univ Valencia, CSIC, Inst Fis Corpuscular, Parque Cient,C Catedrat Jose Beltran 2, E-46980 Paterna, Spain, Email: John.Barrio@ific.uv.es  
  Corporate Author Thesis  
  Publisher Iop Publishing Ltd Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1748-0221 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000369998500034 Approved no  
  Is ISI yes International Collaboration no  
  Call Number IFIC @ pastor @ Serial 2548  
Permanent link to this record
 

 
Author Ros, A.; Lerche, C.W.; Sebastia, A.; Sanchez, F.; Benlloch, J.M. doi  openurl
  Title Retroreflector arrays for better light collection efficiency of gamma-ray imaging detectors with continuous scintillation crystals without DOI misestimation Type Journal Article
  Year 2014 Publication Journal of Instrumentation Abbreviated Journal J. Instrum.  
  Volume (down) 9 Issue Pages P04009 - 14pp  
  Keywords Gamma detectors (scintillators, CZT, HPG, HgI etc); Interaction of radiation with matter; Gamma camera, SPECT, PET PET/CT, coronary CT angiography (CTA); Detector design and construction technologies and materials  
  Abstract A method to improve light collection efficiency of gamma-ray imaging detectors by using retroreflector arrays has been tested, simulations of the behaviour of the scintillation light illuminating the retroreflector surface have been made. Measurements including retroreflector arrays in the setup have also been taken. For the measurements, positron emission tomography (PET) detectors with continuous scintillation crystals have been used. Each detector module consists of a continuous LSO-scintillator of dimensions 49x49x10 mm(3) and a H8500 position-sensitive photo-multiplier (PSPMT) from Hamamatsu. By using a continuous scintillation crystal, the scintillation light distribution has not been destroyed and the energy, the centroids along the x- and y-direction and the depth of interaction (DOI) can be estimated. Simulations have also been run taking into account the use of continuous scintillation crystals. Due to the geometry of the continuous scintillation crystals in comparison with pixelated crystals, a good light collection efficiency is necessary to correctly reconstruct the impact point of the gamma-ray. The aim of this study is to investigate whether micro-machine retro-reflectors improve light yield without misestimation of the impact point. The results shows an improvement on the energy and centroid resolutions without worsening the depth of interaction resolution. Therefore it can be concluded that using retroreflector arrays at the entrance side of the scintillation crystal improves light collection efficiency without worsening the impact point estimation.  
  Address [Ros, A.] Inst Fis Corpuscular IFIC, Valencia 46980, Spain, Email: anrogar2@i3m.upv.es  
  Corporate Author Thesis  
  Publisher Iop Publishing Ltd Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1748-0221 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000336123800049 Approved no  
  Is ISI yes International Collaboration no  
  Call Number IFIC @ pastor @ Serial 1798  
Permanent link to this record
 

 
Author ATLAS Collaboration (Aad, G. et al); Bernabeu Verdu, J.; Cabrera Urban, S.; Castillo Gimenez, V.; Costa, M.J.; Fassi, F.; Ferrer, A.; Fiorini, L.; Fuster, J.; Garcia, C.; Garcia-Argos, C.; Garcia Navarro, J.E.; Gonzalez de la Hoz, S.; Hernandez Jimenez, Y.; Higon-Rodriguez, E.; Irles Quiles, A.; Kaci, M.; King, M.; Lacasta, C.; Lacuesta, V.R.; March, L.; Marti-Garcia, S.; Miñano, M.; Mitsou, V.A.; Moles-Valls, R.; Oliver Garcia, E.; Pedraza Lopez, S.; Perez Garcia-Estañ, M.T.; Romero Adam, E.; Ros, E.; Salt, J.; Sanchez Martinez, V.; Soldevila, U.; Sanchez, J.; Torro Pastor, E.; Valero, A.; Valladolid Gallego, E.; Valls Ferrer, J.A.; Villaplana Perez, M.; Vos, M. url  doi
openurl 
  Title Operation and performance of the ATLAS semiconductor tracker Type Journal Article
  Year 2014 Publication Journal of Instrumentation Abbreviated Journal J. Instrum.  
  Volume (down) 9 Issue Pages P08009 - 73pp  
  Keywords Solid state detectors; Charge transport and multiplication in solid media; Particle tracking detectors (Solid-state detectors); Detector modelling and simulations I (interaction of radiation with matter, interaction of photons with matter, interaction of hadrons with matter, etc)  
  Abstract The semiconductor tracker is a silicon microstrip detector forming part of the inner tracking system of the ATLAS experiment at the LHC. The operation and performance of the semiconductor tracker during the first years of LHC running are described. More than 99% of the detector modules were operational during this period, with an average intrinsic hit efficiency of (99.74 +/- 0.04)%. The evolution of the noise occupancy is discussed, and measurements of the Lorentz angle, delta-ray production and energy loss presented. The alignment of the detector is found to be stable at the few-micron level over long periods of time. Radiation damage measurements, which include the evolution of detector leakage currents, are found to be consistent with predictions and are used in the verification of radiation background simulations.  
  Address [Jackson, P.; Soni, N.; White, M. J.] Univ Adelaide, Dept Phys, Adelaide, SA, Australia  
  Corporate Author Thesis  
  Publisher Iop Publishing Ltd Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1748-0221 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000341927600037 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 1945  
Permanent link to this record
 

 
Author XENON Collaboration (Aprile, E. et al); Orrigo, S.E.A. url  doi
openurl 
  Title Conceptual design and simulation of a water Cherenkov muon veto for the XENON1T experiment Type Journal Article
  Year 2014 Publication Journal of Instrumentation Abbreviated Journal J. Instrum.  
  Volume (down) 9 Issue Pages P11006 - 20pp  
  Keywords Cherenkov detectors; Cherenkov and transition radiation; Detector modelling and simulations I (interaction of radiation with matter, interaction of photons with matter, interaction of hadrons with matter, etc); Dark Matter detectors (WIMPs, axions, etc.)  
  Abstract XENON is a dark matter direct detection project, consisting of a time projection chamber (TPC) filled with liquid xenon as detection medium. The construction of the next generation detector, XENON1T, is presently taking place at the Laboratori Nazionali del Gran Sasso (LNGS) in Italy. It aims at a sensitivity to spin-independent cross sections of 2.10(47) cm(2) for WIMP masses around 50 GeV/c(2), which requires a background reduction by two orders of magnitude compared to XENON100, the current generation detector. An active system that is able to tag muons and muon-induced backgrounds is critical for this goal. A water Cherenkov detector of similar to 10m height and diameter has been therefore developed, equipped with 8 inch photomultipliers and cladded by a reflective foil. We present the design and optimization study for this detector, which has been carried out with a series of Monte Carlo simulations. The muon veto will reach very high detection efficiencies for muons (> 99.5%) and showers of secondary particles from muon interactions in the rock (> 70%). Similar efficiencies will be obtained for XENONnT, the upgrade of XENON1T, which will later improve the WIMP sensitivity by another order of magnitude. With the Cherenkov water shield studied here, the background from muon-induced neutrons in XENON1T is negligible.  
  Address [Aprile, E.; Contreras, H.; Goetzke, L. W.; Fernandez, A. J. Melgarejo; Messina, M.; Plante, G.; Rizzo, A.] Columbia Univ, Dept Phys, New York, NY 10027 USA, Email: dr.serena.fattori@gmail.com  
  Corporate Author Thesis  
  Publisher Iop Publishing Ltd Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1748-0221 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000345026000020 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 2061  
Permanent link to this record
 

 
Author NEXT Collaboration (Alvarez, V. et al); Carcel, S.; Cervera-Villanueva, A.; Diaz, J.; Ferrario, P.; Gil, A.; Gomez-Cadenas, J.J.; Laing, A.; Liubarsky, I.; Lorca, D.; Martin-Albo, J.; Monrabal, F.; Muñoz Vidal, J.; Nebot-Guinot, M.; Rodriguez, J.; Serra, L.; Simon, A.; Sorel, M.; Yahlali, N. url  doi
openurl 
  Title Radiopurity control in the NEXT-100 double beta decay experiment: procedures and initial measurements Type Journal Article
  Year 2013 Publication Journal of Instrumentation Abbreviated Journal J. Instrum.  
  Volume (down) 8 Issue Pages T01002 - 19pp  
  Keywords Radiation calculations; Time projection Chambers (TPC); Gamma detectors (scintillators, CZT, HPG, HgI etc)  
  Abstract The “Neutrino Experiment with a Xenon Time-Projection Chamber” (NEXT) is intended to investigate the neutrinoless double beta decay of Xe-136, which requires a severe suppression of potential backgrounds. An extensive screening and material selection process is underway for NEXT since the control of the radiopurity levels of the materials to be used in the experimental set-up is a must for rare event searches. First measurements based on Glow Discharge Mass Spectrometry and gamma-ray spectroscopy using ultra-low background germanium detectors at the Laboratorio Subterraneo de Canfranc (Spain) are described here. Activity results for natural radioactive chains and other common radionuclides are summarized, being the values obtained for some materials like copper and stainless steel very competitive. The implications of these results for the NEXT experiment are also discussed.  
  Address [Alvarez, V.; Carcel, S.; Cervera, A.; Diaz, J.; Ferrario, P.; Gil, A.; Gomez-Cadenas, J. J.; Laing, A.; Liubarsky, I.; Lorca, D.; Martin-Albo, J.; Martinez, A.; Monrabal, F.; Munoz Vidal, J.; Nebot-Guinot, M.; Rodriguez, J.; Serra, L.; Simon, A.; Sorel, M.; Yahlali, N.] CSIC, Inst Fis Corpuscular IFIC, Valencia 46980, Spain, Email: gomez@mail.cern.ch  
  Corporate Author Thesis  
  Publisher Iop Publishing Ltd Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1748-0221 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000320665400083 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 1516  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records:
ific federMinisterio de Ciencia e InnovaciĆ³nAgencia Estatal de Investigaciongva