toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author DUNE Collaboration (Abi, B. et al); Antonova, M.; Barenboim, G.; Cervera-Villanueva, A.; De Romeri, V.; Fernandez Menendez, P.; Garcia-Peris, M.A.; Izmaylov, A.; Martin-Albo, J.; Masud, M.; Mena, O.; Novella, P.; Sorel, M.; Ternes, C.A.; Tortola, M.; Valle, J.W.F. url  doi
openurl 
  Title Neutrino interaction classification with a convolutional neural network in the DUNE far detector Type Journal Article
  Year 2020 Publication Physical Review D Abbreviated Journal Phys. Rev. D  
  Volume (down) 102 Issue 9 Pages 092003 - 20pp  
  Keywords  
  Abstract The Deep Underground Neutrino Experiment is a next-generation neutrino oscillation experiment that aims to measure CP-violation in the neutrino sector as part of a wider physics program. A deep learning approach based on a convolutional neural network has been developed to provide highly efficient and pure selections of electron neutrino and muon neutrino charged-current interactions. The electron neutrino (antineutrino) selection efficiency peaks at 90% (94%) and exceeds 85% (90%) for reconstructed neutrino energies between 2-5 GeV. The muon neutrino (antineutrino) event selection is found to have a maximum efficiency of 96% (97%) and exceeds 90% (95%) efficiency for reconstructed neutrino energies above 2 GeV. When considering all electron neutrino and antineutrino interactions as signal, a selection purity of 90% is achieved. These event selections are critical to maximize the sensitivity of the experiment to CP-violating effects.  
  Address [Decowski, M. P.; De Jong, P.] Univ Amsterdam, NL-1098 XG Amsterdam, Netherlands, Email: saul.alonso.monsalve@cern.ch;  
  Corporate Author Thesis  
  Publisher Amer Physical Soc Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2470-0010 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000587596500004 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 4598  
Permanent link to this record
 

 
Author Miranda, O.G.; Papoulias, D.K.; Sanders, O.; Tortola, M.; Valle, J.W.F. url  doi
openurl 
  Title Future CEvNS experiments as probes of lepton unitarity and light sterile neutrinos Type Journal Article
  Year 2020 Publication Physical Review D Abbreviated Journal Phys. Rev. D  
  Volume (down) 102 Issue 11 Pages 113014 - 14pp  
  Keywords  
  Abstract We determine the sensitivities of short-baseline coherent elastic neutrino-nucleus scattering (CE nu NS) experiments using a pion decay at rest neutrino source as a probe for nonunitarity in the lepton sector, as expected in low-scale type-I seesaw schemes. We also identify the best configuration for probing light sterile neutrinos at future ton-scale liquid argon CE nu NS experiments, estimating the projected sensitivities on the sterile neutrino parameters. Possible experimental setups at the Spallation Neutron Source, Lujan facility and the European Spallation Source are discussed. Provided that systematic uncertainties remain under control, we find that CE nu NS experiments will be competitive with oscillation measurements in the long run.  
  Address [Miranda, O. G.; Sanders, O.] Ctr Invest & Estudios Avanzados IPN, Dept Fis, Apartado Postal 14-740, Mexico City 07000, DF, Mexico, Email: omr@fis.cinvestav.mx;  
  Corporate Author Thesis  
  Publisher Amer Physical Soc Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2470-0010 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000602268000005 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 4664  
Permanent link to this record
 

 
Author Miranda, O.G.; Papoulias, D.K.; Tortola, M.; Valle, J.W.F. url  doi
openurl 
  Title Probing new neutral gauge bosons with CE nu NS and neutrino-electron scattering Type Journal Article
  Year 2020 Publication Physical Review D Abbreviated Journal Phys. Rev. D  
  Volume (down) 101 Issue 7 Pages 073005 - 13pp  
  Keywords  
  Abstract The potential for probing extra neutral gauge boson mediators (Z') from low-energy measurements is comprehensively explored. Our study mainly focuses on Z' mediators present in string-inspired E-6 models and left-right symmetry. We estimate the sensitivities of coherent-elastic neutrino-nucleus scattering (CE nu NS) and neutrino-electron scattering experiments. Our results indicate that such low-energy high-intensity measurements can provide a valuable probe, complementary to high-energy collider searches and electroweak precision measurements.  
  Address [Miranda, O. G.] IPN, Ctr Invest & Estudios Avanzados, Dept Fis, Apartado Postal 14-740, Mexico City 07000, DF, Mexico, Email: omr@fis.cinvestav.mx;  
  Corporate Author Thesis  
  Publisher Amer Physical Soc Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2470-0010 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000527127700002 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 4374  
Permanent link to this record
 

 
Author Terol-Calvo, J.; Tortola, M.; Vicente, A. url  doi
openurl 
  Title High-energy constraints from low-energy neutrino nonstandard interactions Type Journal Article
  Year 2020 Publication Physical Review D Abbreviated Journal Phys. Rev. D  
  Volume (down) 101 Issue 9 Pages 095010 - 14pp  
  Keywords  
  Abstract Many scenarios of new physics predict the existence of neutrino nonstandard interactions, new vector contact interactions between neutrinos, and first generation fermions beyond the Standard Model. We obtain model-independent constraints on the Standard Model effective field theory at high energies from bounds on neutrino nonstandard interactions derived at low energies. Our analysis explores a large set of new physics scenarios and includes full one-loop running effects below and above the electroweak scale. Our results show that neutrino nonstandard interactions already push the scale of new physics beyond the TeV. We also conclude that bounds derived by other experimental probes, in particular by low-energy precision measurements and by charged lepton flavor violation searches, are generally more stringent. Our study constitutes a first step toward the systematization of phenomenological analyses to evaluate the impact of neutrino nonstandard interactions for new physics scenarios at high energies.  
  Address [Terol-Calvo, Jorge; Tortola, Mariam; Vicente, Avelino] Univ Valencia, CSIC, Inst Fis Corpuscular, C Catedrat Jose Beltran 2, E-46980 Paterna, Valencia, Spain, Email: jorge.terol@ific.uv.es;  
  Corporate Author Thesis  
  Publisher Amer Physical Soc Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2470-0010 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000531733300009 Approved no  
  Is ISI yes International Collaboration no  
  Call Number IFIC @ pastor @ Serial 4392  
Permanent link to this record
 

 
Author Anamiati, G.; De Romeri, V.; Hirsch, M.; Ternes, C.A.; Tortola, M. url  doi
openurl 
  Title Quasi-Dirac neutrino oscillations at DUNE and JUNO Type Journal Article
  Year 2019 Publication Physical Review D Abbreviated Journal Phys. Rev. D  
  Volume (down) 100 Issue 3 Pages 035032 - 12pp  
  Keywords  
  Abstract Quasi-Dirac neutrinos are obtained when the Lagrangian density of a neutrino mass model contains both Dirac and Majorana mass terms, and the Majorana terms are sufficiently small. This type of neutrino introduces new mixing angles and mass splittings into the Hamiltonian, which will modify the standard neutrino oscillation probabilities. In this paper, we focus on the case where the new mass splittings are too small to be measured, but new angles and phases are present. We perform a sensitivity study for this scenario for the upcoming experiments DUNE and JUNO, finding that they will improve current bounds on the relevant parameters. Finally, we also explore the discovery potential of both experiments, assuming that neutrinos are indeed quasi-Dirac particles.  
  Address [Anamiati, G.; De Romeri, V.; Hirsch, M.; Ternes, C. A.; Tortola, M.] Univ Valencia, CSIC, Inst Fis Corpuscular, Paterna 46980, Spain, Email: anamiati@ific.uv.es;  
  Corporate Author Thesis  
  Publisher Amer Physical Soc Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2470-0010 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000482944200007 Approved no  
  Is ISI yes International Collaboration no  
  Call Number IFIC @ pastor @ Serial 4124  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records:
ific federMinisterio de Ciencia e InnovaciĆ³nAgencia Estatal de Investigaciongva