toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Gallego Cadavid, A.; Enea Romano, A.; Gariazzo, S. url  doi
openurl 
  Title CMB anomalies and the effects of local features of the inflaton potential Type Journal Article
  Year 2017 Publication European Physical Journal C Abbreviated Journal Eur. Phys. J. C  
  Volume (down) 77 Issue 4 Pages 242 - 9pp  
  Keywords  
  Abstract Recent analysis of the WMAP and Planck data have shown the presence of a dip and a bump in the spectrum of primordial perturbations at the scales k = 0.002 Mpc(-1) and k = 0.0035 Mpc(-1), respectively. We analyze for the first time the effects of a local feature in the inflaton potential to explain the observed deviations from scale invariance in the primordial spectrum. We perform a best-fit analysis of the cosmic microwave background (CMB) radiation temperature and polarization data. The effects of the features can improve the agreement with observational data respect to the featureless model. The best-fit local feature affects the primordial curvature spectrum mainly in the region of the bump, leaving the spectrum unaffected on other scales.  
  Address [Cadavid, Alexander Gallego; Romano, Antonio Enea] Kyoto Univ, Yukavva Inst Theoret Phys, Kyoto, Japan, Email: antonio.enea.romano@cern.ch  
  Corporate Author Thesis  
  Publisher Springer Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1434-6044 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000399448800003 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 3119  
Permanent link to this record
 

 
Author Gariazzo, S.; Mena, O.; Schwetz, T. url  doi
openurl 
  Title Quantifying the tension between cosmological and terrestrial constraints on neutrino masses Type Journal Article
  Year 2023 Publication Physics of the Dark Universe Abbreviated Journal Phys. Dark Universe  
  Volume (down) 40 Issue Pages 101226 - 8pp  
  Keywords Neutrino masses; Neutrino mass ordering; Neutrino oscillations; Cosmological measurements of neutrino; masses  
  Abstract The sensitivity of cosmology to the total neutrino mass scale E m & nu; is approaching the minimal values required by oscillation data. We study quantitatively possible tensions between current and forecasted cosmological and terrestrial neutrino mass limits by applying suitable statistical tests such as Bayesian suspiciousness, parameter goodness-of-fit tests, or a parameter difference test. In particular, the tension will depend on whether the normal or the inverted neutrino mass ordering is assumed. We argue, that it makes sense to reject inverted ordering from the cosmology/oscillation comparison only if data are consistent with normal ordering. Our results indicate that, in order to reject inverted ordering with this argument, an accuracy on the sum of neutrino masses & sigma;(m & nu;) of better than 0.02 eV would be required from future cosmological observations.  
  Address [Gariazzo, Stefano] Ist Nazl Fis Nucl INFN, Sez Torino, Via P Giuria 1, I-10125 Turin, Italy, Email: gariazzo@to.infn.it  
  Corporate Author Thesis  
  Publisher Elsevier Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes WOS:001042929800001 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 5623  
Permanent link to this record
 

 
Author Vagnozzi, S.; Di Valentino, E.; Gariazzo, S.; Melchiorri, A.; Mena, O.; Silk, J. url  doi
openurl 
  Title The galaxy power spectrum take on spatial curvature and cosmic concordance Type Journal Article
  Year 2021 Publication Physics of the Dark Universe Abbreviated Journal Phys. Dark Universe  
  Volume (down) 33 Issue Pages 100851 - 17pp  
  Keywords Cosmological parameters; Spatial curvature; Cosmological tensions  
  Abstract The concordance of the ACDM cosmological model in light of current observations has been the subject of an intense debate in recent months. The 2018 Planck Cosmic Microwave Background (CMB) temperature anisotropy power spectrum measurements appear at face value to favour a spatially closed Universe with curvature parameter Omega(K) < 0. This preference disappears if Baryon Acoustic Oscillation (BAO) measurements are combined with Planck data to break the geometrical degeneracy, although the reliability of this combination has been questioned due to the strong tension present between the two datasets when assuming a curved Universe. Here, we approach this issue from yet another point of view, using measurements of the full-shape (FS) galaxy power spectrum, P(k), from the Baryon Oscillation Spectroscopic Survey DR12 CMASS sample. By combining Planck data with FS measurements, we break the geometrical degeneracy and find Omega(K) = 0.0023 +/- 0.0028. This constrains the Universe to be spatially flat to sub-percent precision, in excellent agreement with results obtained using BAO measurements. However, as with BAO, the overall increase in the best-fit chi(2) suggests a similar level of tension between Planck and P(k) under the assumption of a curved Universe. While the debate on spatial curvature and the concordance between cosmological datasets remains open, our results provide new perspectives on the issue, highlighting the crucial role of FS measurements in the era of precision cosmology.  
  Address [Vagnozzi, Sunny] Univ Cambridge, Kavli Inst Cosmol, Cambridge CB3 0HA, England, Email: sunny.vagnozzi@ast.cam.ac.uk;  
  Corporate Author Thesis  
  Publisher Elsevier Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000704383100022 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 4984  
Permanent link to this record
 

 
Author Gariazzo, S.; Mena, O.; Ramirez, H.; Boubekeur, L. url  doi
openurl 
  Title Primordial power spectrum features in phenomenological descriptions of inflation Type Journal Article
  Year 2017 Publication Physics of the Dark Universe Abbreviated Journal Phys. Dark Universe  
  Volume (down) 17 Issue Pages 38-45  
  Keywords Inflation; Primordial power spectrum; Sound speed  
  Abstract We extend an alternative, phenomenological approach to inflation by means of an equation of state and a sound speed, both of them functions of the number of e-folds and four phenomenological parameters. This approach captures a number of possible inflationary models, including those with non-canonical kinetic terms or scale-dependent non-gaussianities. We perform Markov Chain Monte Carlo analyses using the latest cosmological publicly available measurements, which include Cosmic Microwave Background (CMB) data from the Planck satellite. Within this parameterization, we discard scale invariance with a significance of about 10 sigma, and the running of the spectral index is constrained as alpha(s) = -0.60(-0.10)(+0.08) x 10(-3) (68% CL errors). The limit on the tensor-to-scalar ratio is r < 0.005 at 95% CL from CMB data alone. We find no significant evidence for this alternative parameterization with present cosmological observations. The maximum amplitude of the equilateral non-gaussianity that we obtain, vertical bar f(NL)(equil)vertical bar < 1, is much smaller than the current Planck mission errors, strengthening the case for future high-redshift, all-sky surveys, which could reach the required accuracy on equilateral non-gaussianities.  
  Address [Gariazzo, Stefano] Univ Turin, Dept Phys, Via P Giuria 1, I-10125 Turin, Italy, Email: omena@ific.uv.es  
  Corporate Author Thesis  
  Publisher Elsevier Science Bv Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2212-6864 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000411869100006 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 3319  
Permanent link to this record
 

 
Author Archidiacono, M.; Gariazzo, S.; Giunti, C.; Hannestad, S.; Tram, T. url  doi
openurl 
  Title Sterile neutrino self-interactions: H-0 tension and short-baseline anomalies Type Journal Article
  Year 2020 Publication Journal of Cosmology and Astroparticle Physics Abbreviated Journal J. Cosmol. Astropart. Phys.  
  Volume (down) 12 Issue 12 Pages 029 - 20pp  
  Keywords cosmological neutrinos; cosmological parameters from CMBR; particle physics – cosmology connection; physics of the early universe  
  Abstract Sterile neutrinos with a mass in the eV range have been invoked as a possible explanation of a variety of short baseline (SBL) neutrino oscillation anomalies. However, if one considers neutrino oscillations between active and sterile neutrinos, such neutrinos would have been fully thermalised in the early universe, and would be therefore in strong conflict with cosmological bounds. In this study we first update cosmological bounds on the mass and energy density of eV-scale sterile neutrinos. We then perform an updated study of a previously proposed model in which the sterile neutrino couples to a new light pseudoscalar degree of freedom. Consistently with previous analyses, we find that the model provides a good fit to all cosmological data and allows the high value of H-0 measured in the local universe to be consistent with measurements of the cosmic microwave background. However, new high l polarisation data constrain the sterile neutrino mass to be less than approximately 1 eV in this scenario. Finally, we combine the cosmological bounds on the pseudoscalar model with a Bayesian inference analysis of SBL data and conclude that only a sterile mass in narrow ranges around 1 eV remains consistent with both cosmology and SBL data.  
  Address [Archidiacono, Maria] Univ Milan, Via G Celoria 16, I-20133 Milan, Italy, Email: maria.archidiacono@unimi.it;  
  Corporate Author Thesis  
  Publisher Iop Publishing Ltd Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1475-7516 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000609105900015 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 4688  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records:
ific federMinisterio de Ciencia e InnovaciĆ³nAgencia Estatal de Investigaciongva