|   | 
Details
   web
Records
Author Otten, S.; Caron, S.; de Swart, W.; van Beekveld, M.; Hendriks, L.; van Leeuwen, C.; Podareanu, D.; Ruiz de Austri, R.; Verheyen, R.
Title Event generation and statistical sampling for physics with deep generative models and a density information buffer Type Journal Article
Year 2021 Publication Nature Communications Abbreviated Journal Nat. Commun.
Volume (down) 12 Issue 1 Pages 2985 - 16pp
Keywords
Abstract Simulating nature and in particular processes in particle physics require expensive computations and sometimes would take much longer than scientists can afford. Here, we explore ways to a solution for this problem by investigating recent advances in generative modeling and present a study for the generation of events from a physical process with deep generative models. The simulation of physical processes requires not only the production of physical events, but to also ensure that these events occur with the correct frequencies. We investigate the feasibility of learning the event generation and the frequency of occurrence with several generative machine learning models to produce events like Monte Carlo generators. We study three processes: a simple two-body decay, the processes e(+)e(-)-> Z -> l(+)l(-) and pp -> tt<mml:mo><overbar></mml:mover> including the decay of the top quarks and a simulation of the detector response. By buffering density information of encoded Monte Carlo events given the encoder of a Variational Autoencoder we are able to construct a prior for the sampling of new events from the decoder that yields distributions that are in very good agreement with real Monte Carlo events and are generated several orders of magnitude faster. Applications of this work include generic density estimation and sampling, targeted event generation via a principal component analysis of encoded ground truth data, anomaly detection and more efficient importance sampling, e.g., for the phase space integration of matrix elements in quantum field theories. Here, the authors report buffered-density variational autoencoders for the generation of physical events. This method is computationally less expensive over other traditional methods and beyond accelerating the data generation process, it can help to steer the generation and to detect anomalies.
Address [Otten, Sydney; Caron, Sascha; de Swart, Wieske; van Beekveld, Melissa; Hendriks, Luc; Verheyen, Rob] Radboud Univ Nijmegen, Inst Math Astro & Particle Phys IMAPP, Nijmegen, Netherlands, Email: Sydney.Otten@ru.nl
Corporate Author Thesis
Publisher Nature Research Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2041-1723 ISBN Medium
Area Expedition Conference
Notes WOS:000658761600003 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 4862
Permanent link to this record
 

 
Author LHCb Collaboration (Aaij, R. et al); Martinez-Vidal, F.; Oyanguren, A.; Ruiz Valls, P.; Sanchez Mayordomo, C.
Title Determination of the quark coupling strength vertical bar V-ub vertical bar using baryonic decays Type Journal Article
Year 2015 Publication Nature Physics Abbreviated Journal Nat. Phys.
Volume (down) 11 Issue 9 Pages 743-747
Keywords
Abstract In the Standard Model of particle physics, the strength of the couplings of the b quark to the u and c quarks, vertical bar V-ub vertical bar and vertical bar V-ub vertical bar, are governed by the coupling of the quarks to the Higgs boson. Using data from the LHCb experiment at the Large Hadron Collider, the probability for the Lambda(0)(b) baryon to decay into the p mu(-)(nu) over bar (mu) final state relative to the Lambda(+)(c)mu(-)(nu) over bar (mu) final state is measured. Combined with theoretical calculations of the strong interaction and a previously measured value of vertical bar V-ub vertical bar, the first vertical bar V-ub vertical bar measurement to use a baryonic decay is performed. This measurement is consistent with previous determinations of vertical bar V-ub vertical bar using B meson decays to specific final states and confirms the existing incompatibility with those using an inclusive sample of final states.
Address [Bediaga, I.; De Miranda, J. M.; Ferreira Rodrigues, F.; Gomes, A.; Massafferri, A.; Rodrigues, B. Osorio; dos Reis, A. C.; Rodrigues, A. B.] Ctr Brasileiro Pesquisas Fis, Rio De Janeiro, Brazil, Email: u.egede@imperial.ac.uk
Corporate Author Thesis
Publisher Nature Publishing Group Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1745-2473 ISBN Medium
Area Expedition Conference
Notes WOS:000360709200018 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 2388
Permanent link to this record
 

 
Author Cole, P.S.; Bertone, G.; Coogan, A.; Gaggero, D.; Karydas, T.; Kavanagh, B.J.; Spieksma, T.F.M.; Tomaselli, G.M.
Title Distinguishing environmental effects on binary black hole gravitational waveforms Type Journal Article
Year 2023 Publication Nature Astronomy Abbreviated Journal Nat. Astron.
Volume (down) 7 Issue 8 Pages 943-950
Keywords
Abstract A Bayesian approach to comparing the effects of accretion disks, dark matter or clouds of ultra-light bosons on gravitational waveforms from a black hole binary system concludes that detectors such as LISA can distinguish between these environments. Future gravitational wave interferometers such as the Laser Interferometer Space Antenna, Taiji, DECi-hertz Interferometer Gravitational wave Observatory and TianQin will enable precision studies of the environment surrounding black holes. These detectors will probe the millihertz frequency range, as yet unexplored by current gravitational wave detectors. Furthermore, sources will remain in band for durations of up to years, meaning that the inspiral phase of the gravitational wave signal, which can be affected by the environment, will be observable. In this paper, we study intermediate and extreme mass ratio binary black hole inspirals, and consider three possible environments surrounding the primary black hole: accretion disks, dark matter spikes and clouds of ultra-light scalar fields, also known as gravitational atoms. We present a Bayesian analysis of the detectability and measurability of these three environments. Focusing for concreteness on the case of a detection with LISA, we show that the characteristic imprint they leave on the gravitational waveform would allow us to identify the environment that generated the signal and to accurately reconstruct its model parameters.
Address [Cole, Philippa S.; Bertone, Gianfranco; Karydas, Theophanes; Spieksma, Thomas F. M.; Tomaselli, Giovanni Maria] Univ Amsterdam, Inst Theoret Phys Amsterdam, Gravitat Astroparticle Phys Amsterdam GRAPPA, Amsterdam, Netherlands, Email: p.s.cole@uva.nl
Corporate Author Thesis
Publisher Nature Portfolio Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2397-3366 ISBN Medium
Area Expedition Conference
Notes WOS:001000769700001 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 5546
Permanent link to this record
 

 
Author HAWC Collaboration (Abeysekara, A.U. et al); Salesa Greus, F.
Title HAWC observations of the acceleration of very-high-energy cosmic rays in the Cygnus Cocoon Type Journal Article
Year 2021 Publication Nature Astronomy Abbreviated Journal Nat. Astron.
Volume (down) 4 Issue Pages 465–471
Keywords
Abstract Cosmic rays with energies up to a few PeV are known to be accelerated within the Milky Way(1,2). Traditionally, it has been presumed that supernova remnants were the main source of these very-high-energy cosmic rays(3,4), but theoretically it is difficult to accelerate protons to PeV energies(5,6) and observationally there simply is no evidence of the remnants being sources of hadrons with energies above a few tens of TeV7,8. One possible source of protons with those energies is the Galactic Centre region(9). Here, we report observations of 1-100 TeV gamma rays coming from the 'Cygnus Cocoon'(10), which is a superbubble that surrounds a region of massive star formation. These gamma rays are likely produced by 10-1,000 TeV freshly accelerated cosmic rays that originate from the enclosed star-forming region Cyg OB2. Until now it was not known that such regions could accelerate particles to these energies. The measured flux likely originates from hadronic interactions. The spectral shape and the emission profile of the Cocoon changes from GeV to TeV energies, which reveals the transport of cosmic particles and historical activity in the superbubble.
Address [Abeysekara, A. U.; Hona, B.; Kieda, D.; Newbold, M.; Springer, R. W.] Univ Utah, Dept Phys & Astron, Salt Lake City, UT 84112 USA, Email: rdb3@stanford.edu;
Corporate Author Thesis
Publisher Nature Research Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2397-3366 ISBN Medium
Area Expedition Conference
Notes WOS:000627714400002 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 4763
Permanent link to this record
 

 
Author ATLAS Collaboration (Aad, G. et al); Amoros, G.; Cabrera Urban, S.; Castillo Gimenez, V.; Costa, M.J.; Escobar, C.; Ferrer, A.; Fuster, J.; Garcia, C.; Gonzalez de la Hoz, S.; Hernandez Jimenez, Y.; Higon-Rodriguez, E.; Irles Quiles, A.; Kaci, M.; Lacasta, C.; Lacuesta, V.R.; Marti-Garcia, S.; Miñano, M.; Mitsou, V.A.; Moles-Valls, R.; Moreno Llacer, M.; Oliver Garcia, E.; Perez Garcia-Estañ, M.T.; Ros, E.; Salt, J.; Solans, C.A.; Soldevila, U.; Sanchez, J.; Torro Pastor, E.; Valladolid Gallego, E.; Valls Ferrer, J.A.; Villaplana Perez, M.; Vos, M.; Wildauer, A.
Title Measurement of the inelastic proton-proton cross-section at sqrt(s)=7 TeV with the ATLAS detector Type Journal Article
Year 2011 Publication Nature Communications Abbreviated Journal Nat. Commun.
Volume (down) 2 Issue Pages 463 - 14pp
Keywords
Abstract The dependence of the rate of proton-proton interactions on the centre-of-mass collision energy, root s, is of fundamental importance for both hadron collider physics and particle astrophysics. The dependence cannot yet be calculated from first principles; therefore, experimental measurements are needed. Here we present the first measurement of the inelastic proton-proton interaction cross-section at a centre-of-mass energy, root s, of 7 TeV using the ATLAS detector at the Large Hadron Collider. Events are selected by requiring hits on scintillation counters mounted in the forward region of the detector. An inelastic crosssection of 60.3 +/- 2.1 mb is measured for xi > 5x10(-6), where xi is calculated from the invariant mass, M(X), of hadrons selected using the largest rapidity gap in the event. For diffractive events, this corresponds to requiring at least one of the dissociation masses to be larger than 15.7 GeV.
Address [Bechtle, P; Kuutmann, EB; Boehler, M; Ehrenfeld, W; Ferrara, V; Fischer, G; Glazov, A; Goebel, M; Fajardo, LSG; Da Costa, JGPF; Gosdzik, B; Gregor, IM; Hiller, KH; Hristova, I; Husemann, U; Belenguer, MJ; Johnert, S; Karnevskiy, M; Katzy, J; Kono, T; Lankford, AJ; Lobodzinska, E; Ludwig, D; Mattig, S; Medinnis, M; Mijovic, L; Monig, K; Naumann, T; Nozicka, M; Cavalcanti, TP; Petschull, D; Piec, SM; Placakyte, R; Qin, Z; Rubinskiy, I; Stelzer, HJ; Tackmann, K; Terwort, M; Vankov, P; Viti, M; Wildt, MA; Zhu, H] DESY, D-2000 Hamburg, Germany, Email: atlas.publications@cern.ch
Corporate Author Thesis
Publisher Nature Publishing Group Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2041-1723 ISBN Medium
Area Expedition Conference
Notes WOS:000294807200005 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ elepoucu @ Serial 758
Permanent link to this record