|   | 
Details
   web
Records
Author Fonseca, R.M.; Grimus, W.
Title Classification of lepton mixing matrices from finite residual symmetries Type Journal Article
Year 2014 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.
Volume (down) 09 Issue 9 Pages 033 - 54pp
Keywords Global Symmetries; Beyond Standard Model; Neutrino Physics
Abstract Assuming that neutrinos are Majorana particles, we perform a complete classification of all possible mixing matrices which are fully determined by residual symmetries in the charged-lepton and neutrino mass matrices. The classification is based on the assumption that the residual symmetries originate from a finite flavour symmetry group. The mathematical tools which allow us to accomplish this classification are theorems on sums of roots of unity. We find 17 sporadic cases plus one infinite series of mixing matrices associated with three-flavour mixing, all of which have already been discussed in the literature. Only the infinite series contains mixing matrices which are compatible with the data at the 3 sigma level.
Address [Fonseca, Renato M.] Univ Valencia, CSIC, Inst Fis Corpuscular, AHEP Grp, E-46071 Valencia, Spain, Email: renato.fonseca@ific.uv.es;
Corporate Author Thesis
Publisher Springer Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1029-8479 ISBN Medium
Area Expedition Conference
Notes WOS:000347898400002 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 2084
Permanent link to this record
 

 
Author Centelles Chulia, S.; Doring, C.; Rodejohann, W.; Saldana-Salazar, U.J.
Title Natural axion model from flavour Type Journal Article
Year 2020 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.
Volume (down) 09 Issue 9 Pages 137 - 29pp
Keywords Anomalies in Field and String Theories; Beyond Standard Model; Global Symmetries; Higgs Physics
Abstract We explore a common symmetrical origin for two long standing problems in particle physics: the strong CP and the fermion mass hierarchy problems. The Peccei-Quinn mechanism solves the former one with an anomalous global U(1)(PQ) symmetry. Here we investigate how this U(1)(PQ) could at the same time explain the fermion mass hierarchy. We work in the context of a four-Higgs-doublet model which explains all quark and charged fermion masses with natural, i.e. order 1, Yukawa couplings. Moreover, the axion of the model constitutes a viable dark matter candidate and neutrino masses are incorporated via the standard type-I seesaw mechanism. A simple extension of the model allows for Dirac neutrinos.
Address [Centelles Chulia, Salvador] Univ Valencia, CSIC, Inst Fis Corpuscular, AHEP Grp, Parc Cientif Paterna,C Catedrat Jose Beltran 2, E-46980 Valencia, Spain, Email: salcen@ific.uv.es;
Corporate Author Thesis
Publisher Springer Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1029-8479 ISBN Medium
Area Expedition Conference
Notes WOS:000574615500003 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 4553
Permanent link to this record
 

 
Author Bernabeu, J.; Martinez-Vidal, F.; Villanueva-Perez, P.
Title Time reversal violation from the entangled B-0(B)over-bar(0) system Type Journal Article
Year 2012 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.
Volume (down) 08 Issue 8 Pages 064 - 18pp
Keywords Discrete and Finite Symmetries; B-Physics; CP violation
Abstract We discuss the concepts and methodology to implement an experiment probing directly Time Reversal (T) non-invariance, without any experimental connection to CP violation, by the exchange of in and out states. The idea relies on the B-0(B) over bar (0)) entanglement and decay time information available at B factories. The flavor or CP tag of the state of the still living neutral meson by the first decay of its orthogonal partner overcomes the problem of irreversibility for unstable systems, which prevents direct tests of T with incoherent particle states. T violation in the time evolution between the two decays means experimentally a difference between the rates for the time-ordered (l+X, J/psi K-s) and (J/psi K-L, l(-)X) decays, and three other independent asymmetries. The proposed strategy has been applied to simulated data samples of similar size and features to those currently available, from which we estimate the significance of the expected discovery to reach many standard deviations.
Address [Bernabeu, J.] Univ Valencia, Dept Theoret Phys, E-46100 Burjassot, Spain, Email: Jose.Bernabeu@uv.es;
Corporate Author Thesis
Publisher Springer Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1126-6708 ISBN Medium
Area Expedition Conference
Notes WOS:000309883600021 Approved no
Is ISI yes International Collaboration no
Call Number IFIC @ pastor @ Serial 1215
Permanent link to this record
 

 
Author Bernigaud, J.; Blanke, M.; de Medeiros Varzielas, I.; Talbert, J.; Zurita, J.
Title LHC signatures of tau-flavoured vector leptoquarks Type Journal Article
Year 2022 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.
Volume (down) 08 Issue 8 Pages 127 - 31pp
Keywords New Light Particles; Specific BSM Phenomenology; Flavour Symmetries; Theories of Flavour
Abstract We consider the phenomenological signatures of Simplified Models of Flavourful Leptoquarks, whose Beyond-the-Standard Model (SM) couplings to fermion generations occur via textures that are well motivated from a broad class of ultraviolet flavour models (which we briefly review). We place particular emphasis on the study of the vector leptoquark Delta(mu) with assignments (3, 1, 2/3) under the SM's gauge symmetry, SU(3)(C) x SU(2)(L) x U(1)(Y), which has the tantalising possibility of explaining both R-K(*) and R-D(*) anomalies. Upon performing global likelihood scans of the leptoquark's coupling parameter space, focusing in particular on models with tree-level couplings to a single charged lepton species, we then provide confidence intervals and benchmark points preferred by low(er)-energy flavour data. Finally, we use these constraints to further evaluate the (promising) Large Hadron Collider (LHC) detection prospects of pairs of tau-flavoured Delta(mu), through their distinct (a)symmetric decay channels. Namely, we consider direct third-generation leptoquark and jets plus missing-energy searches at the LHC, which we find to be complementary. Depending on the simplified model under consideration, the direct searches constrain the Delta(mu), mass up to 1500-1770 GeV when the branching fraction of Delta(mu), is entirely to third-generation quarks (but are significantly reduced with decreased branching ratios to the third generation), whereas the missing-energy searches constrain the mass up to 1150-1700 GeV while being largely insensitive to the third-generation branching fraction.
Address [Bernigaud, Jordan; Blanke, Monika] Karlsruhe Inst Technol, Inst Astroparticle Phys IAP, Hermann Von Helmholtz Pl 1, D-76344 Eggenstein Leopoldshafen, Germany, Email: jordan.bernigaud@kit.edu;
Corporate Author Thesis
Publisher Springer Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1029-8479 ISBN Medium
Area Expedition Conference
Notes WOS:000840379400001 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 5329
Permanent link to this record
 

 
Author Han, C.; Lopez-Ibañez, M.L.; Melis, A.; Vives, O.; Yang, J.M.
Title Anomaly-free ALP from non-Abelian flavor symmetry Type Journal Article
Year 2022 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.
Volume (down) 08 Issue 8 Pages 306 - 21pp
Keywords Axions and ALPs; Flavour Symmetries; Lepton Flavour Violation (charged)
Abstract Motivated by the XENON1T excess in electron-recoil measurements, we investigate the prospects of probing axion-like particles (ALP) in lepton flavor violation experiments. In particular, we identify such ALP as a pseudo-Goldstone from the spontaneous breaking of the flavor symmetries that explain the mixing structure of the Standard Model leptons. We present the case of the flavor symmetries being a non-Abelian U(2) and the ALP originating from its U(1) subgroup, which is anomaly-free with the Standard Model group. We build two explicit realistic examples that reproduce leptonic masses and mixings and show that the ALP which is consistent with XENON1T anomaly could be probed by the proposed LFV experiments.
Address [Han, C.] Sun Yat Sen Univ, Sch Phys, Guangzhou 510275, Peoples R China, Email: hanchch@mail.sysu.edu.cn;
Corporate Author Thesis
Publisher Springer Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1029-8479 ISBN Medium
Area Expedition Conference
Notes WOS:000848742400001 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 5348
Permanent link to this record
 

 
Author Merle, A.; Platscher, M.; Rojas, N.; Valle, J.W.F.; Vicente, A.
Title Consistency of WIMP Dark Matter as radiative neutrino mass messenger Type Journal Article
Year 2016 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.
Volume (down) 07 Issue 7 Pages 013 - 17pp
Keywords Beyond Standard Model; Renormalization Group; Neutrino Physics; Discrete Symmetries
Abstract The scotogenic scenario provides an attractive approach to both Dark Matter and neutrino mass generation, in which the same symmetry that stabilises Dark Matter also ensures the radiative seesaw origin of neutrino mass. However the simplest scenario may suffer from inconsistencies arising from the spontaneous breaking of the underlying Z(2) symmetry. Here we show that the singlet-triplet extension of the simplest model naturally avoids this problem due to the presence of scalar triplets neutral under the Z(2) which affect the evolution of the couplings in the scalar sector. The scenario offers good prospects for direct WIMP Dark Matter detection through the nuclear recoil method.
Address [Merle, Alexander] Max Planck Inst Phys & Astrophys, Werner Heisenberg Inst, Fohringer Ring 6, D-80805 Munich, Germany, Email: amerle@mpp.mpg.de;
Corporate Author Thesis
Publisher Springer Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1029-8479 ISBN Medium
Area Expedition Conference
Notes WOS:000379170300005 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 2748
Permanent link to this record
 

 
Author Bernabeu, J.; Botella, F.J.; Nebot, M.
Title Genuine T, CP, CPT asymmetry parameters for the entangled B-d system Type Journal Article
Year 2016 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.
Volume (down) 06 Issue 6 Pages 100 - 24pp
Keywords Discrete Symmetries; Space-Time Symmetries
Abstract The precise connection between the theoretical T, CP, CPT asymmetries, in terms of transition probabilities between the filtered neutral meson B-d states, and the experimental asymmetries, in terms of the double decay rate intensities for Flavour-CP eigenstate decay products in a B-d-factory of entangled states, is established. This allows the identification of genuine Asymmetry Parameters in the time distribution of the asymmetries and their measurability by disentangling genuine and possible fake terms. We express the nine asymmetry parameters three different observables for each one of the three symmetries in terms of the ingredients of the Weisskopf-Wigner dynamical description of the entangled B-d-meson states and we obtain a global fit to their values from the BaBar collaboration experimental results. The possible fake terms are all compatible with zero and the information content of the nine asymmetry parameters is indeed different. The non -vanishing Delta l(c)(T) = 0.687 +/- 0.020 and Delta l(c)(CP) = 0.680 +/- 0.021 are impressive separate direct evidence of Time -Reversal -violation and CP-violation in these transitions and compatible with Standard Model expectations. An intriguing 2 sigma effect for the Re(theta) parameter responsible of CPT -violation appears which, interpreted as an upper limit, leads to vertical bar M (B) over baro (B) over baro vertical bar MBoBo < 4.0 x 10(-5) eV at 95% C.L. for the diagonal flavour terms of the mass matrix. It contributes to the CP-violating Delta l(c)(CP) asymmetry parameter in an unorthodox manner – in its cos(Delta M t) time dependence-, and it is accessible in facilities with non-entangled B-d's, like the LHCb experiment.
Address [Bernabeu, Jose] Univ Valencia, Dept Fis Teor, E-46100 Valencia, Spain, Email: Jose.Bernabeu@uv.es;
Corporate Author Thesis
Publisher Springer Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1029-8479 ISBN Medium
Area Expedition Conference
Notes WOS:000379028400001 Approved no
Is ISI yes International Collaboration no
Call Number IFIC @ pastor @ Serial 2752
Permanent link to this record
 

 
Author Bonilla, C.; Herms, J.; Medina, O.; Peinado, E.
Title Discrete dark matter mechanism as the source of neutrino mass scales Type Journal Article
Year 2023 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.
Volume (down) 06 Issue 6 Pages 078 - 23pp
Keywords Flavour Symmetries; Models for Dark Matter; Neutrino Mixing
Abstract The hierarchy in scale between atmospheric and solar neutrino mass splittings is investigated through two distinct neutrino mass mechanisms from tree-level and one-loop-level contributions. We demonstrate that the minimal discrete dark matter mechanism contains the ingredients for explaining this hierarchy. This scenario is characterized by adding new RH neutrinos and SU(2)-doublet scalars to the Standard Model as triplet representations of an A(4) flavor symmetry. The A(4) symmetry breaking, which occurs at the electroweak scale, leads to a residual DOUBLE-STRUCK CAPITAL Z(2) symmetry responsible for the dark matter stability and dictates the neutrino phenomenology. Finally, we show that to reproduce the neutrino mixing angles correctly, it is necessary to violate CP in the scalar potential.
Address [Bonilla, Cesar] Univ Catolica Norte, Dept Fis, Ave Angamos 0610,Casilla 1280, Antofagasta, Chile, Email: cesar.bonilla@ucn.cl;
Corporate Author Thesis
Publisher Springer Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1029-8479 ISBN Medium
Area Expedition Conference
Notes WOS:001007947500002 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 5561
Permanent link to this record
 

 
Author Boucenna, M.S.; Hirsch, M.; Morisi, S.; Peinado, E.; Taoso, M.; Valle, J.W.F.
Title Phenomenology of dark matter from A_4 flavor symmetry Type Journal Article
Year 2011 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.
Volume (down) 05 Issue 5 Pages 037 - 20pp
Keywords Cosmology of Theories beyond the SM; Neutrino Physics; Discrete and Finite Symmetries
Abstract We investigate a model in which Dark Matter is stabilized by means of a Z(2) parity that results from the same non-abelian discrete flavor symmetry which accounts for the observed patter of neutrino mixing. In our A(4) example the standard model is extended by three extra Higgs doublets and the Z(2) parity emerges as a remnant of the spontaneous breaking of A(4) after electroweak symmetry breaking. We perform an analysis of the parameter space of the model consistent with electroweak precision tests, collider searches and perturbativity. We determine the regions compatible with the observed relic dark matter density and we present prospects for detection in direct as well as indirect Dark Matter search experiments.
Address [Boucenna, M. S.; Hirsch, M.; Morisi, S.; Peinado, E.; Taoso, M.; Valle, J. W. F.] Univ Valencia, CSIC, Inst Fis Corpuscular, AHEP Grp, E-46071 Valencia, Spain, Email: boucenna@ific.uv.es
Corporate Author Thesis
Publisher Springer Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1126-6708 ISBN Medium
Area Expedition Conference
Notes ISI:000291364300037 Approved no
Is ISI yes International Collaboration no
Call Number IFIC @ elepoucu @ Serial 674
Permanent link to this record
 

 
Author Bustamante, M.; Gago, A.M.; Pena-Garay, C.
Title Energy-independent new physics in the flavour ratios of high-energy astrophysical neutrinos Type Journal Article
Year 2010 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.
Volume (down) 04 Issue 4 Pages 066 - 28pp
Keywords Beyond Standard Model; Neutrino Physics; Discrete and Finite Symmetries
Abstract We have studied the consequences of breaking the CPT symmetry in the neutrino sector, using the expected high-energy neutrino flux from distant cosmological sources such as active galaxies. For this purpose we have assumed three different hypotheses for the neutrino production model, characterised by the flavour fluxes at production phi(0)(e) : phi(0)(mu) : phi(0)(tau) = 1 : 2 : 0, 0 : 1 : 0, and 1 : 0 : 0, and studied the theoretical and experimental expectations for the muon-neutrino flux at Earth, phi(mu), and for the flavour ratios at Earth, R = phi(mu)/phi(e) and S = phi(tau)/phi(mu). CPT violation (CPTV) has been implemented by adding an energy-independent term to the standard neutrino oscillation Hamiltonian. This introduces three new mixing angles, two new eigenvalues and three new phases, all of which have currently unknown values. We have varied the new mixing angles and eigenvalues within certain bounds, together with the parameters associated to pure standard oscillations. Our results indicate that, for the models 1 : 2 : 0 and 0 : 1 : 0, it might be possible to find large deviations of phi(mu), R, and S between the cases without and with CPTV, provided the CPTV eigenvalues lie within 10(-29) – 10(-27) GeV, or above. Moreover, if CPTV exists, there are certain values of R and S that can be accounted for by up to three production models. If no CPTV were observed, we could set limits on the CPTV eigenvalues of the same order. Detection prospects calculated using IceCube suggest that for the models 1 : 2 : 0 and 0 : 1 : 0, the modifications due to CPTV are larger and more clearly separable from the standard-oscillations predictions. We conclude that IceCube is potentially able to detect CPTV but that, depending on the values of the CPTV parameters, there could be a mis-determination of the neutrino production model.
Address [Bustamante, M.; Gago, A. M.] Univ Catolica Peru, Secc Fis, Dept Ciencias, Lima, Peru, Email: mbustamante@pucp.edu.pe
Corporate Author Thesis
Publisher Springer Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1126-6708 ISBN Medium
Area Expedition Conference
Notes ISI:000277473100004 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ elepoucu @ Serial 455
Permanent link to this record