|   | 
Details
   web
Records
Author Bustamante, M.; Gago, A.M.; Jones Perez, J.
Title SUSY renormalization group effects in ultra high energy neutrinos Type Journal Article
Year 2011 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.
Volume (down) 05 Issue 5 Pages 133 - 26pp
Keywords Neutrino Physics; Supersymmetric Standard Model; Renormalization Group
Abstract We have explored the question of whether the renormalization group running of the neutrino mixing parameters in the Minimal Supersymmetric Standard Model is detectable with ultra-high energy neutrinos from active galactic nuclei (AGN). We use as observables the ratios of neutrino fluxes produced at the AGN, focusing on four different neutrino production models: (Phi(0)(v epsilon+(v) over bar epsilon) : Phi(0)(v mu+(v) over bar mu) : Phi(0)(v tau+(v) over bar tau)) = (1 : 2 : 0), (0 : 1 : 0), (1 : 0 : 0), and (1 : 1 : 0). The prospects for observing deviations experimentally are taken into consideration, and we find out that it is necessary to impose a cut-off on the transferred momentum of Q(2) >= 10(7) GeV(2). However, this condition, together with the expected low value of the diffuse AGN neutrino flux, yields a negligible event rate at a km-scale. Cerenkov detector such as IceCube.
Address [Bustamante, M; Gago, AM] Pontificia Univ Catolica Peru, Dept Ciencias, Sec Fis, Lima, Peru, Email: mbustamante@pucp.edu.pe
Corporate Author Thesis
Publisher Springer Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1126-6708 ISBN Medium
Area Expedition Conference
Notes WOS:000291364500065 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 684
Permanent link to this record
 

 
Author del Aguila, F.; Aparici, A.; Bhattacharya, S.; Santamaria, A.; Wudka, J.
Title A realistic model of neutrino masses with a large neutrinoless double beta decay rate Type Journal Article
Year 2012 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.
Volume (down) 05 Issue 5 Pages 133 - 30pp
Keywords Neutrino Physics; Higgs Physics; Beyond Standard Model
Abstract The minimal Standard Model extension with the Weinberg operator does accommodate the observed neutrino masses and mixing, but predicts a neutrinoless double beta (0 nu beta beta) decay rate proportional to the effective electron neutrino mass, which can be then arbitrarily small within present experimental limits. However, in general 0 nu beta beta decay can have an independent origin and be near its present experimental bound; whereas neutrino masses are generated radiatively, contributing negligibly to 0 nu beta beta decay. We provide a realization of this scenario in a simple, well defined and testable model, with potential LHC effects and calculable neutrino masses, whose two-loop expression we derive exactly. We also discuss the connection of this model to others that have appeared in the literature, and remark on the significant differences that result from various choices of quantum number assignments and symmetry assumptions. In this type of models lepton flavor violating rates are also preferred to be relatively large, at the reach of foreseen experiments. Interestingly enough, in our model this stands for a large third mixing angle, sin(2) theta(13) greater than or similar to 0.008, when μ-> eee is required to lie below its present experimental limit.
Address [del Aguila, Francisco] Univ Granada, CAFPE, E-18071 Granada, Spain, Email: faguila@ugr.es;
Corporate Author Thesis
Publisher Springer Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1126-6708 ISBN Medium
Area Expedition Conference
Notes WOS:000305238600053 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 1092
Permanent link to this record
 

 
Author Li, X.Q.; Li, Y.M.; Lu, G.R.; Su, F.
Title B-s(0)-(B)over-bar(s)(0) mixing in a family non-universal Z ' model revisited Type Journal Article
Year 2012 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.
Volume (down) 05 Issue 5 Pages 049 - 27pp
Keywords Beyond Standard Model; B-Physics; CP violation
Abstract Motivated by the very recent measurements performed at the LHCb and the Tevatron of the B-s(0) – (B) over bar (0)(s) mixing, in this paper we revisit it in a family non-universal Z' model, to check if a simultaneous explanation for all the mixing observables, especially for the like-sign dimuon charge asymmetry observed by the D0 collaboration, could be made in such a specific model. In the first scenario where the Z' boson contributes only to the off-diagonal element M-12(s), it is found that, once the combined constraints from Delta M-s, phi(s) and Delta Gamma(s) are imposed, the model could not explain the measured flavour-specific CP asymmetry a(fs)(s), at least within its 1 sigma ranges. In the second scenario where the NP contributes also to the absorptive part Gamma(s)(12) via tree-level Z'-induced b -> c (c) over bars operators, we find that, with the constraints from Delta M-s, phi(s) and the indirect CP asymmetry in (B) over bar (d) -> J/psi K-S taken into account, the present measured 1 sigma experimental ranges for a(fs)(s) could not be reproduced too. Thus, such a specific Z' model with our specific assumptions could not simultaneously reconcile all the present data on B-s(0) – B-s(0) mixing. Future improved measurements from the LHCb and the proposed superB experiments, especially of the flavour-specific CP asymmetries, are expected to shed light on the issue.
Address [Li, Xin-Qiang; Li, Yan-Min; Lu, Gong-Ru] Henan Normal Univ, Dept Phys, Xinxiang 453007, Henan, Peoples R China, Email: xqli@itp.ac.cn;
Corporate Author Thesis
Publisher Springer Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1126-6708 ISBN Medium
Area Expedition Conference
Notes WOS:000305236000049 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 1103
Permanent link to this record
 

 
Author Beneke, M.; Hellmann, C.; Ruiz-Femenia, P.
Title Non-relativistic pair annihilation of nearly mass degenerate neutralinos and charginos III. Computation of the Sommerfeld enhancements Type Journal Article
Year 2015 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.
Volume (down) 05 Issue 5 Pages 115 - 57pp
Keywords Cosmology of Theories beyond the SM; Supersymmetric Standard Model; Nonperturbative Effects
Abstract This paper concludes the presentation of the non-relativistic effective field theory formalism designed to calculate the radiative corrections that enhance the pair-annihilation cross sections of slowly moving neutralinos and charginos within the general minimal supersymmetric standard model (MSSM). While papers I and II focused on the computation of the tree-level annihilation rates that feed into the short-distance part, here we describe in detail the method to obtain the Sommerfeld factors that contain the enhanced long-distance corrections. This includes the computation of the potential interactions in the MSSM, which are provided in compact analytic form, and a novel solution of the multi-state Schrodinger equation that is free from the numerical instabilities generated by large mass splittings between the scattering states. Our results allow for a precise computation of the MSSM neutralino dark matter relic abundance and pair-annihilation rates in the present Universe, when Sommerfeld enhancements are important.
Address [Beneke, M.; Hellmann, C.] Tech Univ Munich, Phys Dept T31, D-85748 Garching, Germany, Email: charlotte.hellmann@tum.de;
Corporate Author Thesis
Publisher Springer Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1029-8479 ISBN Medium
Area Expedition Conference
Notes WOS:000354959300001 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 2235
Permanent link to this record
 

 
Author Helo, J.C.; Hirsch, M.; Ota, T.; Pereira dos Santos, F.A.
Title Double beta decay and neutrino mass models Type Journal Article
Year 2015 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.
Volume (down) 05 Issue 5 Pages 092 - 40pp
Keywords Beyond Standard Model; Neutrino Physics
Abstract Neutrinoless double beta decay allows to constrain lepton number violating extensions of the standard model. If neutrinos are Majorana particles, the mass mechanism will always contribute to the decay rate, however, it is not a priori guaranteed to be the dominant contribution in all models. Here, we discuss whether the mass mechanism dominates or not from the theory point of view. We classify all possible (scalar-mediated) short-range contributions to the decay rate according to the loop level, at which the corresponding models will generate Majorana neutrino masses, and discuss the expected relative size of the different contributions to the decay rate in each class. Our discussion is general for models based on the SM group but does not cover models with an extended gauge. We also work out the phenomenology of one concrete 2-loop model in which both, mass mechanism and short-range diagram, might lead to competitive contributions, in some detail.
Address [Helo, J. C.] Univ Tecn Federico Santa Maria, Ctr Cient Tecnol Valparaiso, Valparaiso, Chile, Email: juancarlos.helo@usm.cl;
Corporate Author Thesis
Publisher Springer Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1029-8479 ISBN Medium
Area Expedition Conference
Notes WOS:000363471700001 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 2441
Permanent link to this record