|   | 
Details
   web
Records
Author Gariazzo, S.; Gerbino, M.; Brinckmann, T.; Lattanzi, M.; Mena, O.; Schwetz, T.; Choudhury, S.R.; Freese, K.; Hannestad, S.; Ternes, C.A.; Tortola, M.
Title Neutrino mass and mass ordering: no conclusive evidence for normal ordering Type Journal Article
Year 2022 Publication Journal of Cosmology and Astroparticle Physics Abbreviated Journal J. Cosmol. Astropart. Phys.
Volume (down) 10 Issue 10 Pages 010 - 18pp
Keywords Bayesian reasoning; neutrino properties; neutrino masses from cosmology; cosmological parameters from CMBR
Abstract The extraction of the neutrino mass ordering is one of the major challenges in particle physics and cosmology, not only for its implications for a fundamental theory of mass generation in nature, but also for its decisive role in the scale of future neutrinoless double beta decay experimental searches. It has been recently claimed that current oscillation, beta decay and cosmological limits on the different observables describing the neutrino mass parameter space provide robust decisive Bayesian evidence in favor of the normal ordering of the neutrino mass spectrum [1]. We further investigate these strong claims using a rich and wide phenomenology, with different sampling techniques of the neutrino parameter space. Contrary to the findings of Jimenez et al. [1], no decisive evidence for the normal mass ordering is found. Neutrino mass ordering analyses must rely on priors and parameterizations that are ordering-agnostic: robust results should be regarded as those in which the preference for the normal neutrino mass ordering is driven exclusively by the data, while we find a difference of up to a factor of 33 in the Bayes factors among the different priors and parameterizations exploited here. An ordering-agnostic prior would be represented by the case of parameterizations sampling over the two mass splittings and a mass scale, or those sampling over the individual neutrino masses via normal prior distributions only. In this regard, we show that the current significance in favor of the normal mass ordering should be taken as 2.7 sigma (i.e. moderate evidence), mostly driven by neutrino oscillation data. Let us stress that, while current data favor NO only mildly, we do not exclude the possibility that this may change in the future. Eventually, upcoming oscillation and cosmological data may (or may not) lead to a more significant exclusion of IO.
Address [Gariazzo, Stefano; Ternes, Christoph A.] Ist Nazl Fis Nucl INFN, Sez Torino, Via P Giuria 1, I-10125 Turin, Italy, Email: gariazzo@to.infn.it;
Corporate Author Thesis
Publisher IOP Publishing Ltd Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1475-7516 ISBN Medium
Area Expedition Conference
Notes WOS:000928487200002 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 5477
Permanent link to this record
 

 
Author Chakraborty, S.; Gupta, A.; Vanvlasselaer, M.
Title Anomaly induced cooling of neutron stars: a Standard Model contribution Type Journal Article
Year 2023 Publication Journal of Cosmology and Astroparticle Physics Abbreviated Journal J. Cosmol. Astropart. Phys.
Volume (down) 10 Issue 10 Pages 030 - 23pp
Keywords neutron stars; neutrino theory
Abstract Young neutron stars cool via the emission of neutrinos from their core. A precise understanding of all the different processes producing neutrinos in the hot and degenerate matter is essential for assessing the cooling rate of such stars. The main Standard Model processes contributing to this effect are nu bremsstrahlung, mURCA among others. In this paper, we investigate another Standard Model process initiated by the Wess-Zumino-Witten term, leading to the emission of neutrino pairs via N gamma -> N nu nu over bar . We find that for proto-neutron stars, such processes with degenerate neutrons can be comparable and even dominate over the typical and well-known cooling mechanisms.
Address [Chakraborty, Sabyasachi] Indian Inst Technol, Dept Phys, Kanpur 208016, India, Email: sabyac@iitk.ac.in;
Corporate Author Thesis
Publisher IOP Publishing Ltd Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1475-7516 ISBN Medium
Area Expedition Conference
Notes WOS:001116545800007 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 5872
Permanent link to this record
 

 
Author Forero, D.V.; Morisi, S.; Tortola, M.; Valle, J.W.F.
Title Lepton flavor violation and non-unitary lepton mixing in low-scale type-I seesaw Type Journal Article
Year 2011 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.
Volume (down) 09 Issue 9 Pages 142 - 18pp
Keywords Beyond Standard Model; Neutrino Physics
Abstract Within low-scale seesaw mechanisms, such as the inverse and linear seesaw, one expects (i) potentially large lepton flavor violation (LFV) and (ii) sizeable non-standard neutrino interactions (NSI). We consider the interplay between the magnitude of non-unitarity effects in the lepton mixing matrix, and the constraints that follow from LFV searches in the laboratory. We find that NSI parameters can be sizeable, up to percent level in some cases, while LFV rates, such as that for μ-> e gamma, lie within current limits, including the recent one set by the MEG collaboration. As a result the upcoming long baseline neutrino experiments offer a window of opportunity for complementary LFV and weak universality tests.
Address [Forero, DV; Morisi, S; Tortola, M; Valle, JWF] Univ Valencia, CSIC, Inst Fis Corpuscular, AHEP Grp,Edificio Inst Paterna, E-46071 Valencia, Spain, Email: dvanegas@ific.uv.es
Corporate Author Thesis
Publisher Springer Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1126-6708 ISBN Medium
Area Expedition Conference
Notes WOS:000296086700001 Approved no
Is ISI yes International Collaboration no
Call Number IFIC @ elepoucu @ Serial 817
Permanent link to this record
 

 
Author Agarwalla, S.K.; Blennow, M.; Fernandez-Martinez, E.; Mena, O.
Title Neutrino probes of the nature of light dark matter Type Journal Article
Year 2011 Publication Journal of Cosmology and Astroparticle Physics Abbreviated Journal J. Cosmol. Astropart. Phys.
Volume (down) 09 Issue 9 Pages 004 - 19pp
Keywords dark matter experiments; neutrino detectors
Abstract Dark matter particles gravitationally trapped inside the Sun may annihilate into Standard Model particles, producing a flux of neutrinos. The prospects of detecting these neutrinos in future multi-kt neutrino detectors designed for other physics searches are explored here. We study the capabilities of a 34/100 kt liquid argon detector and a 100 kt magnetized iron calorimeter detector. These detectors are expected to determine the energy and the direction of the incoming neutrino with unprecedented precision allowing for tests of the dark matter nature at very low dark matter masses, in the range of 10-25 GeV. By suppressing the atmospheric background with angular cuts, these techniques would be sensitive to dark matter-nucleon spin-dependent cross sections at the fb level, reaching down to a few ab for the most favorable annihilation channels and detector technology.
Address [Agarwalla, Sanjib Kumar; Mena, Olga] Univ Politecn Valencia, CSIC, Inst Fis Corpuscular, E-46071 Valencia, Spain, Email: Sanjib.Agarwalla@ific.uv.es
Corporate Author Thesis
Publisher Iop Publishing Ltd Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1475-7516 ISBN Medium
Area Expedition Conference
Notes WOS:000296767000004 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ elepoucu @ Serial 858
Permanent link to this record
 

 
Author Rebel, B.; Hall, C.; Bernard, E.; Faham, C.H.; Ito, T.M.; Lundberg, B.; Messina, M.; Monrabal, F.; Pereverzev, S.P.; Resnati, F.; Rowson, P.C.; Soderberg, M.; Strauss, T.; Tomas, A.; Va'vra, J.; Wang, H.
Title High voltage in noble liquids for high energy physics Type Journal Article
Year 2014 Publication Journal of Instrumentation Abbreviated Journal J. Instrum.
Volume (down) 9 Issue Pages T08004 - 57pp
Keywords Noble liquid detectors (scintillation, ionization, double-phase); Neutrino detectors; Neutron detectors (cold, thermal, fast neutrons); Dark Matter detectors (WIMPs, axions, etc.)
Abstract A workshop was held at Fermilab November 8-9, 2013 to discuss the challenges of using high voltage in noble liquids. The participants spanned the fields of neutrino, dark matter, and electric dipole moment physics. All presentations at the workshop were made in plenary sessions. This document summarizes the experiences and lessons learned from experiments in these fields at developing high voltage systems in noble liquids.
Address [Rebel, B.; Soderberg, M.] Fermilab Natl Accelerator Lab, Batavia, IL 60510 USA, Email: rebel@fnal.gov
Corporate Author Thesis
Publisher Iop Publishing Ltd Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1748-0221 ISBN Medium
Area Expedition Conference
Notes WOS:000341927600043 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 1947
Permanent link to this record