toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Garcia-Cases, F.; Perez-Calatayud, J.; Ballester, F.; Vijande, J.; Granero, D. doi  openurl
  Title Peripheral dose around a mobile linac for intraoperative radiotherapy: radiation protection aspects Type Journal Article
  Year 2018 Publication Journal of Radiological Protection Abbreviated Journal J. Radiol. Prot.  
  Volume (down) 38 Issue 4 Pages 1393-1411  
  Keywords Mobetron; mobile electron linear accelerator; radiotherapy intraoperative  
  Abstract The aim of this work is to analyse the scattered radiation produced by the mobile accelerator Mobetron 1000. To do so, detailed Monte Carlo simulations using two different codes, Penelope2008 and Geant4, were performed. Measurements were also done. To quantify the attenuation due to the internal structures, present in the accelerator head, on the scattered radiation produced, some of the main structural shielding in the Mobetron 1000 has been incorporated into the geometry simulation. Results are compared with measurements. Some discrepancies between the calculated and measured dose values were found. These differences can be traced back to the importance of the radiation component due to low energy scattered electrons. This encouraged us to perform additional calculations to separate the role played by this component. Ambient dose equivalent, H*(10), outside of the operating room (OR) has been evaluated using Geant4. H*(10) has been measured inside and outside the OR, being its values compatible with those reported in the literature once the low energy electron component is removed. With respect to the role played by neutrons, estimations of neutron H*(10) using Geant4 together with H*(10) measurements has been performed for the case of the 12 MeV electron beam. The values obtained agree with the experimental values existing in the literature, being much smaller than those registered in conventional accelerators. This study is a useful tool for the clinical user to investigate the radiation protection issues arising with the use of these accelerators in ORs without structural shielding. These results will also enable to better fix the maximum number of treatments that could be performed while insuring adequate radiological protection of workers and public in the hospital.  
  Address [Garcia-Cases, F.] Hosp Univ San Juan de Alicante, Serv Radiofis & Protecc Radiol, Alacant, Spain, Email: garcia_frad@gva.es  
  Corporate Author Thesis  
  Publisher Iop Publishing Ltd Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0952-4746 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000448769200001 Approved no  
  Is ISI yes International Collaboration no  
  Call Number IFIC @ pastor @ Serial 3784  
Permanent link to this record
 

 
Author Weber, M. et al; Esperante, D. doi  openurl
  Title DONES EVO: Risk mitigation for the IFMIF-DONES facility Type Journal Article
  Year 2024 Publication Nuclear Materials and Energy Abbreviated Journal Nucl. Mater. Energy  
  Volume (down) 38 Issue Pages 101622 - 5pp  
  Keywords Signal Transmission Improvement; RF Conditioning Optimisation; Beam Extraction Device; Medical Isotopes Production; Lithium Purification; Critical Components Manufacture  
  Abstract The International Fusion Materials Irradiation Facility- DEMO Oriented Neutron Source (IFMIF-DONES) is a scientific infrastructure aimed to provide an intense neutron source for the qualification of materials to be used in future fusion power reactors. Its implementation is critical for the construction of the fusion DEMOnstration Power Plant (DEMO). IFMIF-DONES is a unique facility requiring a broad set of technologies. Although most of the necessary technologies have already been validated, there are still some aspects that introduce risks in the evolution of the project. In order to mitigate these risks, a consortium of companies, with the support of research centres and the funding of the CDTI (Centre for the Development of Industrial Technology and Innovation), has launched the DONES EVO Programme, which comprises six lines of research: center dot Improvement of signal transmission and integrity (planning and integration risks) center dot Optimisation of RF conditioning processes (planning and reliability risks) center dot Development of a reliable beam extraction device (reliability risks) center dot Development of technologies for the production of medical isotopes (reliability risks) center dot Improvement of critical parts of the lithium purification system (safety and reliability risks) center dot Validation of the manufacture of critical components with special materials (reliability risk). DONES EVO will focus on developing the appropriate response to the risks identified in the IFMIFDONES project through research and prototyping around the associated technologies.  
  Address [Weber, M.; Ibarra, A.; Maldonado, R.; Podadera, I.] DONES Espana Consortium, IFMIF, Granada, Spain  
  Corporate Author Thesis  
  Publisher Elsevier Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes WOS:001202783400001 Approved no  
  Is ISI yes International Collaboration no  
  Call Number IFIC @ pastor @ Serial 6075  
Permanent link to this record
 

 
Author Ballester, F.; Granero, D.; Perez-Calatayud, J.; Venselaar, J.L.M.; Rivard, M.J. doi  openurl
  Title Study of encapsulated Tm-170 sources for their potential use in brachytherapy Type Journal Article
  Year 2010 Publication Medical Physics Abbreviated Journal Med. Phys.  
  Volume (down) 37 Issue 4 Pages 1629-1637  
  Keywords brachytherapy; cancer; dosimetry; prosthetics; radioisotopes; thulium  
  Abstract Methods: The authors have assumed a theoretical Tm-170 cylindrical source encapsulated with stainless steel and typical dimensions taken from the currently available HDR Ir-192 brachytherapy sources. The dose-rate distribution was calculated for this source using the GEANT4 Monte Carlo (MC) code considering both photon and electron Tm-170 spectra. The AAPM TG-43 U1 brachytherapy dosimetry parameters were derived. To study general properties of Tm-170 encapsulated sources, spherical sources encapsulated with stainless steel and platinum were also studied. Moreover, the influence of small variations in the active core and capsule dimensions on the dosimetric characteristics was assessed. Treatment times required for a Tm-170 source were compared to those for Ir-192 and Yb-169 for the same contained activity. Results: Due to the energetic beta spectrum and the large electron yield, the bremsstrahlung contribution to the dose was of the same order of magnitude as from the emitted gammas and characteristic x rays. Moreover, the electron spectrum contribution to the dose was significant up to 4 mm from the source center compared to the photon contribution. The dose-rate constant Lambda of the cylindrical source was 1.23 cGy h(-1) U-1. The behavior of the radial dose function showed promise for applications in brachytherapy. Due to the electron spectrum, the anisotropy was large for r < 6 mm. Variations in manufacturing tolerances did not significantly influence the final dosimetry data when expressed in cGy h(-1) U-1. For typical capsule dimensions, maximum reference dose rates of about 0.2, 10, and 2 Gy min(-1) would then be obtained for Tm-170, Ir-192, and Yb-169, respectively, resulting in treatment times greater than those for HDR Ir-192 brachytherapy. Conclusions: The dosimetric characteristics of source designs exploiting the low photon energy of Tm-170 were studied for potential application in HDR-brachytherapy. Dose-rate distributions were obtained for cylindrical and simplified spherical Tm-170 source designs (stainless steel and platinum capsule materials) using MC calculations. Despite the high activity of Tm-170, calculated treatment times were much longer than for Ir-192.  
  Address [Ballester, Facundo] Univ Valencia, Dept Atom Mol & Nucl Phys, E-46100 Burjassot, Spain, Email: fballest@uv.es  
  Corporate Author Thesis  
  Publisher Amer Assoc Physicists Medicine Amer Inst Physics Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0094-2405 ISBN Medium  
  Area Expedition Conference  
  Notes ISI:000276211200027 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ elepoucu @ Serial 478  
Permanent link to this record
 

 
Author Rivard, M.J.; Granero, D.; Perez-Calatayud, J.; Ballester, F. doi  openurl
  Title Influence of photon energy spectra from brachytherapy sources on Monte Carlo simulations of kerma and dose rates in water and air Type Journal Article
  Year 2010 Publication Medical Physics Abbreviated Journal Med. Phys.  
  Volume (down) 37 Issue 2 Pages 869-876  
  Keywords biomedical materials; brachytherapy; dosimetry; iodine; iridium; Monte Carlo methods; palladium; radioisotopes  
  Abstract Methods: For Ir-192, I-125, and Pd-103, the authors considered from two to five published spectra. Spherical sources approximating common brachytherapy sources were assessed. Kerma and dose results from GEANT4, MCNP5, and PENELOPE-2008 were compared for water and air. The dosimetric influence of Ir-192, I-125, and Pd-103 spectral choice was determined. Results: For the spectra considered, there were no statistically significant differences between kerma or dose results based on Monte Carlo code choice when using the same spectrum. Water-kerma differences of about 2%, 2%, and 0.7% were observed due to spectrum choice for Ir-192, I-125, and Pd-103, respectively (independent of radial distance), when accounting for photon yield per Bq. Similar differences were observed for air-kerma rate. However, their ratio (as used in the dose-rate constant) did not significantly change when the various photon spectra were selected because the differences compensated each other when dividing dose rate by air-kerma strength. Conclusions: Given the standardization of radionuclide data available from the National Nuclear Data Center (NNDC) and the rigorous infrastructure for performing and maintaining the data set evaluations, NNDC spectra are suggested for brachytherapy simulations in medical physics applications.  
  Address [Rivard, Mark J.] Tufts Univ, Sch Med, Dept Radiat Oncol, Boston, MA 02111 USA, Email: mrivard@tuftsmedicalcenter.org  
  Corporate Author Thesis  
  Publisher Amer Assoc Physicists Medicine Amer Inst Physics Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0094-2405 ISBN Medium  
  Area Expedition Conference  
  Notes ISI:000274075600048 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ elepoucu @ Serial 504  
Permanent link to this record
 

 
Author Ibanez-Rosello, B.; Bautista-Ballesteros, J.A.; Candela-Juan, C.; Villaescusa, J.I.; Ballester, F.; Vijande, J.; Perez-Calatayud, J. doi  openurl
  Title Evaluation of the shielding in a treatment room with an electronic brachytherapy unit Type Journal Article
  Year 2017 Publication Journal of Radiological Protection Abbreviated Journal J. Radiol. Prot.  
  Volume (down) 37 Issue 2 Pages N5-N12  
  Keywords Esteya; electronic brachytherapy; shielding; radiation protection  
  Abstract Esteya (R) (Elekta Brachytherapy, Veenendaal, The Netherlands) is an electronic brachytherapy (eBT) system based on a 69.5 kVp x-ray source and a set of collimators of 1 to 3 cm in diameter, used for treating non-melanoma skin cancer lesions. This study aims to estimate room shielding requirements for this unit. The non-primary (scattered and leakage) ambient dose equivalent rates were measured with a Berthold LB-133 monitor (Berthold Technologies, Bad Wildbad, Germany). The latter ranges from 17 mSv h(-1) at 0.25 m distance from the x-ray source to 0.1 mSv h(-1) at 2.5 m. The necessary room shielding was then estimated following US and some European guidelines. The room shielding for all barriers considered was below 2 mmPb. The dose to a companion who, exceptionally, would stay with the patient during all treatment was estimated to be below 1 mSv if a leaded apron is used. In conclusion, Esteya shielding requirements are minimal.  
  Address [Ibanez-Rosello, Blanca; Ignacio Villaescusa, Juan] La Fe Univ, Radioprotect Dept, E-46026 Valencia, Spain, Email: blanca.ibanez.rosello@gmail.com  
  Corporate Author Thesis  
  Publisher Iop Publishing Ltd Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0952-4746 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000413778600001 Approved no  
  Is ISI yes International Collaboration no  
  Call Number IFIC @ pastor @ Serial 3344  
Permanent link to this record
 

 
Author Beltran Jimenez, J.; de Andres, D.; Delhom, A. url  doi
openurl 
  Title Anisotropic deformations in a class of projectively-invariant metric-affine theories of gravity Type Journal Article
  Year 2020 Publication Classical and Quantum Gravity Abbreviated Journal Class. Quantum Gravity  
  Volume (down) 37 Issue 22 Pages 225013 - 25pp  
  Keywords alternative theories of gravity; metric-affine gravity; anisotropic solutions  
  Abstract Among the general class of metric-affine theories of gravity, there is a special class conformed by those endowed with a projective symmetry. Perhaps the simplest manner to realise this symmetry is by constructing the action in terms of the symmetric part of the Ricci tensor. In these theories, the connection can be solved algebraically in terms of a metric that relates to the spacetime metric by means of the so-called deformation matrix that is given in terms of the matter fields. In most phenomenological applications, this deformation matrix is assumed to inherit the symmetries of the matter sector so that in the presence of an isotropic energy-momentum tensor, it respects isotropy. In this work we discuss this condition and, in particular, we show how the deformation matrix can be anisotropic even in the presence of isotropic sources due to the non-linear nature of the equations. Remarkably, we find that Eddington-inspired-Born-Infeld (EiBI) theories do not admit anisotropic deformations, but more general theories do. However, we find that the anisotropic branches of solutions are generally prone to a pathological physical behaviour.  
  Address [Jimenez, Jose Beltran] Univ Salamanca, Dept Fis Fundamental, E-37008 Salamanca, Spain, Email: jose.beltran@usal.es;  
  Corporate Author Thesis  
  Publisher Iop Publishing Ltd Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0264-9381 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000580878200001 Approved no  
  Is ISI yes International Collaboration no  
  Call Number IFIC @ pastor @ Serial 4576  
Permanent link to this record
 

 
Author Gimenez-Alventosa, V.; Vijande, J.; Ballester, F.; Perez-Calatayud, J. doi  openurl
  Title Transit dose comparisons for Co-60 and Ir-192 HDR sources Type Journal Article
  Year 2016 Publication Journal of Radiological Protection Abbreviated Journal J. Radiol. Prot.  
  Volume (down) 36 Issue 4 Pages 858-864  
  Keywords Monte Carlo; dosimetry; HDR brachytherapy; transit dose  
  Abstract The goal of this study is to evaluate the ambient dose due to the transit of high dose rate (HDR) Co-60 sources along a transfer tube as compared to Ir-192 ones in a realistic clinical scenario. This goal is accomplished by evaluating air-kerma differences with Monte Carlo calculations using PENELOPE2011. Scatter from both the afterloader and the patient was not taken into account. Two sources, mHDR-v2 and Flexisource Co-60, (Elekta Brachytherapy, Veenendaal, the Netherlands) have been considered. These sources were simulated within a standard transfer tube located in an infinite air phantom. The movement of the source was included by displacing their positions along the connecting tube from z = – 75 cm to z = + 75 cm and combining them. Since modern afterloaders like Flexitron (Elekta) or Saginova (BEBIG GmbH) are able to use equally 192Ir and 60Co sources, it was assumed that both sources are displaced with equal speed. Typical HDR source activity content values were provided by the manufacturer. 2D distributions were obtained with type-A uncertainties (k = 2) less than 0.01%. From those, the air-kerma ratio Co-60/Ir-192 was evaluated weighted by their corresponding typical activities. It was found that it varies slowly with distance (less than 10% variation at 75 cm) but strongly in time due to the shorter half-life of the 192Ir (73.83 d). The maximum ratio is located close to the tube. It reaches a value of 0.57 when the typical activity of the sources at the time when they were installed by the vendor was used. Such ratio increases up to 1.28 at the end of the recommended working life (90 d) of the Ir-192 source. Co-60/Ir-192 air-kerma ratios are almost constant (0.51-0.57) in the vicinity of the source-tube with recent installed sources. Nevertheless, air-kerma ratios increase rapidly (1.15-1.29) whenever the Ir-192 is approaching the end of its life. In case of a medical event requiring the medical staff to access the treatment room, these ratios indicate that the dosimetric impact on the medical team will be lower, with a few exceptions, in the case of Co-60-based HDR brachytherapy as compared to Ir-192-based one when typical air-kerma strength values are considered.  
  Address [Gimenez-Alventosa, Vicent; Vijande, Javier; Ballester, Facundo] Univ Valencia, Dept Atom Mol & Nucl Phys, E-46100 Burjassot, Spain, Email: javier.vijande@uv.es  
  Corporate Author Thesis  
  Publisher Iop Publishing Ltd Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0952-4746 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000386436100002 Approved no  
  Is ISI yes International Collaboration no  
  Call Number IFIC @ pastor @ Serial 2839  
Permanent link to this record
 

 
Author Bordes, J.; Chan, H.M.; Tsou, S.T. url  doi
openurl 
  Title delta(CP) for leptons and a new take on CP physics with the FSM Type Journal Article
  Year 2021 Publication International Journal of Modern Physics A Abbreviated Journal Int. J. Mod. Phys. A  
  Volume (down) 36 Issue Pages 2150236 - 22pp  
  Keywords Phenomenology beyond the Standard Model; framed Standard Model; leptonic CP violation; CP physics  
  Abstract A bonus of the framed Standard Model (FSM), constructed initially to explain the mass and mixing patterns of quarks and leptons, is a solution (without axions) of the strong CP problem by cancelling the theta-angle term theta(I) Tr(H-mu v H-mu v*) in coloura by a chiral transformation on a quark zero mode which is inherent in FSM, and produces thereby a CP-violating phase in the CKM matrix similar in size to what is observed.' Extending here to flavour, one finds that there are two terms proportional to Tr(G(mu v) G(mu v)*): (a) in the action from flavour instantons with unknown coefficient, say theta(I)', (b) induced by the above FSM solution to the strong CP-problem with therefore known coefficient theta(C)'. Both terms can be cancelled in the FSM by a chiral transformation on the lepton zero mode to give a Jarlskog invariant J' in the PMNS matrix for leptons of order 10(-2), as is hinted by the experiment. But if, as suggested in Ref. 2, the term theta(I)' is to be cancelled by a chiral transformation in the predicted hidden sector to solve the strong CP problem therein, leaving only the term theta(C)' to be cancelled by the chiral transformation on leptons, then the following prediction results: J' similar to -0.012 (delta(CP)'similar to (1.11)pi) which is (i) of the right order, (ii) of the right sign and (iii) in the range favoured by the present experiment. Together with the earlier result for quarks, this offers an attractive unified treatment of all known CP physics.  
  Address [Bordes, Jose] Univ Valencia, Ctr Mixto CSIC, Dept Fis Teor, Calle Dr Moliner 50, E-46100 Burjassot, Valencia, Spain, Email: jose.m.bordes@uv.es;  
  Corporate Author Thesis  
  Publisher World Scientific Publ Co Pte Ltd Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0217-751x ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000732963000007 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 5058  
Permanent link to this record
 

 
Author Bordes, J.; Chan, H.M.; Tsou, S.T. url  doi
openurl 
  Title Unified FSM treatment of CP physics extended to hidden sector giving (i) delta(CP) for leptons as prediction, (ii) new hints on the material content of the universe Type Journal Article
  Year 2021 Publication International Journal of Modern Physics A Abbreviated Journal Int. J. Mod. Phys. A  
  Volume (down) 36 Issue Pages 2150238 - 19pp  
  Keywords Phenomenology beyond the Standard Model; framed Standard Model; CP physics; dark matter  
  Abstract A unified treatment of CP physics for quarks and leptons in the framed Standard Model (FSM) is extended to include the predicted hidden sector giving as consequences: (i) that an earlier part estimate of the Jarlskog invariant J' for leptons is turned into a prediction for its actual value, i.e. J' similar to -0.012 (delta(CP)' similar to 1.11 pi), which is of the right order of magnitude, of the right sign, and in the range of values favoured by the present experiment, (ii) some novel twists to the effects of CP-violation on the material content of the universe.  
  Address [Bordes, Jose] Univ Valencia, Ctr Mixto CSIC, Dept Fis Teor, Calle Dr Moliner 50, E-46100 Burjassot, Valencia, Spain, Email: jose.m.bordes@uv.es;  
  Corporate Author Thesis  
  Publisher World Scientific Publ Co Pte Ltd Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0217-751x ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000732963000005 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 5059  
Permanent link to this record
 

 
Author Olmo, G.J.; Rubiera-Garcia, D.; Sanchez-Puente, A. url  doi
openurl 
  Title Accelerated observers and the notion of singular spacetime Type Journal Article
  Year 2018 Publication Classical and Quantum Gravity Abbreviated Journal Class. Quantum Gravity  
  Volume (down) 35 Issue 5 Pages 055010 - 18pp  
  Keywords general relativity; geodesic behaviour; black holes; spacetime singularities; modified theories of gravity  
  Abstract Geodesic completeness is typically regarded as a basic criterion to determine whether a given spacetime is regular or singular. However, the principle of general covariance does not privilege any family of observers over the others and, therefore, observers with arbitrary motions should be able to provide a complete physical description of the world. This suggests that in a regular spacetime, all physically acceptable observers should have complete paths. In this work we explore this idea by studying the motion of accelerated observers in spherically symmetric spacetimes and illustrate it by considering two geodesically complete black hole spacetimes recently described in the literature. We show that for bound and locally unbound accelerations, the paths of accelerated test particles are complete, providing further support to the regularity of such spacetimes.  
  Address [Olmo, Gonzalo J.; Sanchez-Puente, Antonio] Univ Valencia, Dept Fis Teor, CSIC, Ctr Mixto, E-46100 Valencia, Spain, Email: gonzalo.olmo@uv.es;  
  Corporate Author Thesis  
  Publisher Iop Publishing Ltd Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0264-9381 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000424042100001 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 3473  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records:
ific federMinisterio de Ciencia e InnovaciĆ³nAgencia Estatal de Investigaciongva