toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Simpson, G.S. et al; Montaner-Piza, A. doi  openurl
  Title Yrast 6(+) Seniority Isomers of Sn-136,Sn-138 Type Journal Article
  Year 2014 Publication Physical Review Letters Abbreviated Journal Phys. Rev. Lett.  
  Volume (down) 113 Issue 13 Pages 132502 - 6pp  
  Keywords  
  Abstract Delayed gamma-ray cascades, originating from the decay of (6(+)) isomeric states, in the very neutron-rich, semimagic isotopes Sn-136,Sn-138 have been observed following the projectile fission of a U-238 beam at RIBF, RIKEN. The wave functions of these isomeric states are proposed to be predominantly a fully aligned pair of f(7/2) neutrons. Shell-model calculations, performed using a realistic effective interaction, reproduce well the energies of the excited states of these nuclei and the measured transition rates, with the exception of the B(E2; 6(+) -> 4(+)) rate of Sn-136, which deviates from a simple seniority scheme. Empirically reducing the nu f(7/2)(2) orbit matrix elements produces a 4(1)(+) state with almost equal seniority 2 and 4 components, correctly reproducing the experimental B(E2; 6(+) -> 4(+)) rate of Sn-136. These data provide a key benchmark for shell-model interactions far from stability.  
  Address [Simpson, G. S.] Univ West Scotland, Sch Engn, Paisley PA1 2BE, Renfrew, Scotland  
  Corporate Author Thesis  
  Publisher Amer Physical Soc Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0031-9007 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000342666500001 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 1957  
Permanent link to this record
 

 
Author Taprogge, J. et al; Gadea, A.; Montaner-Piza, A. doi  openurl
  Title 1p(3/2) Proton-Hole State in Sn-132 and the Shell Structure Along N=82 Type Journal Article
  Year 2014 Publication Physical Review Letters Abbreviated Journal Phys. Rev. Lett.  
  Volume (down) 112 Issue 13 Pages 132501 - 6pp  
  Keywords  
  Abstract A low-lying state in In-131(82), the one-proton hole nucleus with respect to double magic Sn-132, was observed by its gamma decay to the I-pi 1/2(-) beta-emitting isomer. We identify the new state at an excitation energy of E-x = 1353 keV, which was populated both in the beta decay of Cd-131(83) and after beta-delayed neutron emission from Cd-132(84), as the previously unknown pi p(3/2) single-hole state with respect to the Sn-132 core. Exploiting this crucial new experimental information, shell-model calculations were performed to study the structure of experimentally inaccessible N = 82 isotones below Sn-132. The results evidence a surprising absence of proton subshell closures along the chain of N = 82 isotones. The consequences of this finding for the evolution of the N = 82 shell gap along the r-process path are discussed.  
  Address [Taprogge, J.; Jungclaus, A.] CSIC, Inst Estruct Mat, E-28006 Madrid, Spain, Email: andrea.jungclaus@csic.es  
  Corporate Author Thesis  
  Publisher Amer Physical Soc Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0031-9007 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000334336600001 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 1759  
Permanent link to this record
 

 
Author Watanabe, H. et al; Montaner-Piza, A. doi  openurl
  Title Isomers in Pd-128 and Pd-126: Evidence for a Robust Shell Closure at the Neutron Magic Number 82 in Exotic Palladium Isotopes Type Journal Article
  Year 2013 Publication Physical Review Letters Abbreviated Journal Phys. Rev. Lett.  
  Volume (down) 111 Issue 15 Pages 152501 - 5pp  
  Keywords  
  Abstract The level structures of the very neutron-rich nuclei Pd-128 and Pd-126 have been investigated for the first time. In the r-process waiting-point nucleus Pd-128, a new isomer with a half-life of 5.8(8) μs is proposed to have a spin and parity of 8(+) and is associated with a maximally aligned configuration arising from the g(9/2) proton subshell with seniority v = 2. For Pd-126, two new isomers have been identified with half-lives of 0.33(4) and 0.44(3) μs. The yrast 2(+) energy is much higher in Pd-128 than in Pd-126, while the level sequence below the 8(+) isomer in Pd-128 is similar to that in the N = 82 isotone Cd-130. The electric quadrupole transition that depopulates the 8(+) isomer in Pd-128 is more hindered than the corresponding transition in Cd-130, as expected in the seniority scheme for a semimagic, spherical nucleus. These experimental findings indicate that the shell closure at the neutron number N = 82 is fairly robust in the neutron-rich Pd isotopes.  
  Address [Watanabe, H.] Beihang Univ, Int Res Ctr Nuclei & Particles Cosmos, Beijing 100191, Peoples R China, Email: hiroshi@ribf.riken.jp  
  Corporate Author Thesis  
  Publisher Amer Physical Soc Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0031-9007 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000325372500001 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 1605  
Permanent link to this record
 

 
Author Guadilla, V. et al; Algora, A.; Tain, J.L.; Agramunt, J.; Jordan, D.; Monserrate, M.; Montaner-Piza, A.; Nacher, E.; Orrigo, S.E.A.; Rubio, B.; Valencia, E. url  doi
openurl 
  Title Total absorption gamma-ray spectroscopy of the ss decays of Y-96gs,Y-m Type Journal Article
  Year 2022 Publication Physical Review C Abbreviated Journal Phys. Rev. C  
  Volume (down) 106 Issue 1 Pages 014306 - 14pp  
  Keywords  
  Abstract The ss decays of the ground state (gs) and isomeric state (m) of Y-96 have been studied with the total absorption gamma-ray spectroscopy technique at the Ion Guide Isotope Separator On-Line facility. The separation of the 8(+) isomeric state from the 0(-) ground state was achieved thanks to the purification capabilities of the JYFLTRAP double Penning trap system. The ss-intensity distributions of both decays have been independently determined. In the analyses the deexcitation of the 1581.6 keV level in Zr-96, in which conversion electron emission competes with pair production, has been carefully considered and found to have significant impact on the ss-detector efficiency, influencing the ss-intensity distribution obtained. Our results for Y-96gs (0(-)) confirm the large ground state to ground state ss-intensity probability, although a slightly larger value than reported in previous studies was obtained, amounting to 96.6(-2.1)(+0.3) % of the total ss intensity. Given that the decay of Y-96gs is the second most important contributor to the reactor antineutrino spectrum between 5 and 7 MeV, the impact of the present results on reactor antineutrino summation calculations has been evaluated. In the decay of Y-96m (8(+)), previously undetected ss intensity in transitions to states above 6 MeV has been observed. This shows the importance of total absorption gamma-ray spectroscopy measurements of ss decays with highly fragmented deexcitation patterns. Y-96m (8(+)) is a major contributor to reactor decay heat in uranium-plutonium and thorium-uranium fuels around 10 s after fission pulses, and the newly measured average ss and gamma energies differ significantly from the previous values in evaluated databases. The discrepancy is far above the previously quoted uncertainties. Finally, we also report on the successful implementation of an innovative total absorption gamma-ray spectroscopy analysis of the module-multiplicity gated spectra, as a first proof of principle to distinguish between decaying states with very different spin-parity values.  
  Address [Guadilla, V; Le Meur, L.; Fallot, M.; Briz, J. A.; Estienne, M.; Giot, L.; Porta, A.; Cucoanes, A.; Shiba, T.; Zakari-Issoufou, A-A] Univ Nantes, Subatech, IMT Atlantique, CNRS IN2P3, F-44307 Nantes, France, Email: vguadilla@fuw.edu.pl  
  Corporate Author Thesis  
  Publisher Amer Physical Soc Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2469-9985 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000832364800001 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 5313  
Permanent link to this record
 

 
Author Orrigo, S.E A. et al; Rubio, B.; Gelletly, W.; Aguilera, P.; Algora, A.; Morales, A.I.; Agramunt, J.; Guadilla, V.; Montaner-Piza, A. url  doi
openurl 
  Title beta decay of the very neutron-deficient Ge-60 and Ge-62 nuclei Type Journal Article
  Year 2021 Publication Physical Review C Abbreviated Journal Phys. Rev. C  
  Volume (down) 103 Issue 1 Pages 014324 - 12pp  
  Keywords  
  Abstract We report here the results of a study of the beta decay of the proton-rich Ge isotopes, Ge-60 and Ge-62, produced in an experiment at the RIKEN Nishina Center. We have improved our knowledge of the half-lives of Ge-62 [73.5(1) ms] and Ge-60 [25.0(3) ms] and its daughter nucleus, Ga-60 [69.4(2) ms]. We measured individual beta-delayed proton and gamma emissions and their related branching ratios. Decay schemes and absolute Fermi and Gamow-Teller transition strengths have been determined. The mass excesses of the nuclei under study have been deduced. A total beta-delayed proton-emission branching ratio of 67(3)% has been obtained for Ge-60. New information has been obtained on the energy levels populated in Ga-60 and on the 1/2(-) excited state in the beta p daughter Zn-59. We extracted a ground state-to-ground state feeding of 85.3(3)% for the decay of Ge-62. Eight new y lines have been added to the deexcitation of levels populated in the Ga-62 daughter.  
  Address [Orrigo, S. E. A.; Rubio, B.; Gelletly, W.; Aguilera, P.; Algora, A.; Morales, A., I; Agramunt, J.; Guadilla, V; Montaner-Piza, A.] Univ Valencia, Inst Fis Corpuscular, CSIC, E-46071 Valencia, Spain, Email: sonja.orrigo@ific.uv.es  
  Corporate Author Thesis  
  Publisher Amer Physical Soc Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2469-9985 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000613141500002 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 4716  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records:
ific federMinisterio de Ciencia e InnovaciĆ³nAgencia Estatal de Investigaciongva