|   | 
Details
   web
Records
Author Cirigliano, V.; Diaz-Calderon, D.; Falkowski, A.; Gonzalez-Alonso, M.; Rodriguez-Sanchez, A.
Title Semileptonic tau decays beyond the Standard Model Type Journal Article
Year 2022 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.
Volume (down) 04 Issue 4 Pages 152 - 61pp
Keywords Semi-Leptonic Decays; Specific BSM Phenomenology
Abstract Hadronic tau decays are studied as probe of new physics. We determine the dependence of several inclusive and exclusive tau observables on the Wilson coefficients of the low-energy effective theory describing charged-current interactions between light quarks and leptons. The analysis includes both strange and non-strange decay channels. The main result is the likelihood function for the Wilson coefficients in the tau sector, based on the up-to-date experimental measurements and state-of-the-art theoretical techniques. The likelihood can be readily combined with inputs from other low-energy precision observables. We discuss a combination with nuclear beta, baryon, pion, and kaon decay data. In particular, we provide a comprehensive and model-independent description of the new physics hints in the combined dataset, which are known under the name of the Cabibbo anomaly.
Address [Cirigliano, Vincenzo] Los Alamos Natl Lab, Theoret Div, Los Alamos, NM 87545 USA, Email: cirigv@uw.edu;
Corporate Author Thesis
Publisher Springer Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1029-8479 ISBN Medium
Area Expedition Conference
Notes WOS:000788323700004 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 5216
Permanent link to this record
 

 
Author Falkowski, A.; Gonzalez-Alonso, M.; Palavric, A.; Rodriguez-Sanchez, A.
Title Constraints on subleading interactions in beta decay Lagrangian Type Journal Article
Year 2024 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.
Volume (down) 02 Issue 2 Pages 091 - 54pp
Keywords Effective Field Theories; Hadronic Matrix Elements and Weak Decays; Effective Field Theories of QCD; SMEFT
Abstract We discuss the effective field theory (EFT) for nuclear beta decay. The general quark-level EFT describing charged-current interactions between quarks and leptons is matched to the nucleon-level non-relativistic EFT at the OMeV momentum scale characteristic for beta transitions. The matching takes into account, for the first time, the effect of all possible beyond-the-Standard-Model interactions at the subleading order in the recoil momentum. We calculate the impact of all the Wilson coefficients of the leading and subleading EFT Lagrangian on the differential decay width in allowed beta transitions. As an example application, we show how the existing experimental data constrain the subleading Wilson coefficients corresponding to pseudoscalar, weak magnetism, and induced tensor interactions. The data display a 3.5 sigma evidence for nucleon weak magnetism, in agreement with the theory prediction based on isospin symmetry.
Address [Falkowski, Adam; Rodriguez-Sanchez, Antonio] Univ Paris Saclay, IJCLab, CNRS, IN2P3, F-91405 Orsay, France, Email: adam.falkowski@ijclab.in2p3.fr;
Corporate Author Thesis
Publisher Springer Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1029-8479 ISBN Medium
Area Expedition Conference
Notes WOS:001163170700004 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 5966
Permanent link to this record