toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Auclair, P.; Blanco-Pillado, J.J.; Figueroa, D.G.; Jenkins, A.C.; Lewicki, M.; Sakellariadou, M.; Sanidas, S.; Sousa, L.; Steer, D.A.; Wachter, J.M.; Kuroyanagi, S. url  doi
openurl 
  Title Probing the gravitational wave background from cosmic strings with LISA Type Journal Article
  Year 2020 Publication Journal of Cosmology and Astroparticle Physics Abbreviated Journal J. Cosmol. Astropart. Phys.  
  Volume (up) 04 Issue 4 Pages 034 - 50pp  
  Keywords Cosmic strings; domain walls; monopoles; gravitational waves / sources; physics of the early universe; primordial gravitational waves (theory)  
  Abstract Cosmic string networks offer one of the best prospects for detection of cosmological gravitational waves (GWs). The combined incoherent GW emission of a large number of string loops leads to a stochastic GW background (SGWB), which encodes the properties of the string network. In this paper we analyze the ability of the Laser Interferometer Space Antenna (LISA) to measure this background, considering leading models of the string networks. We find that LISA will be able to probe cosmic strings with tensions G μgreater than or similar to O(10(-17)), improving by about 6 orders of magnitude current pulsar timing arrays (PTA) constraints, and potentially 3 orders of magnitude with respect to expected constraints from next generation PTA observatories. We include in our analysis possible modifications of the SGWB spectrum due to different hypotheses regarding cosmic history and the underlying physics of the string network. These include possible modifications in the SGWB spectrum due to changes in the number of relativistic degrees of freedom in the early Universe, the presence of a non-standard equation of state before the onset of radiation domination, or changes to the network dynamics due to a string inter-commutation probability less than unity. In the event of a detection, LISA's frequency band is well-positioned to probe such cosmic events. Our results constitute a thorough exploration of the cosmic string science that will be accessible to LISA.  
  Address [Auclair, Pierre; Steer, Daniele A.] Univ Paris, Lab Astroparticule & Cosmol, 10 Rue Alice Domon & Leonie Duquet, Paris 75013, France, Email: daniel.figueroa@cern.ch  
  Corporate Author Thesis  
  Publisher Iop Publishing Ltd Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1475-7516 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000531476300035 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 4393  
Permanent link to this record
 

 
Author HAWC Collaboration (Abeysekara, A.U. et al); Salesa Greus, F. url  doi
openurl 
  Title HAWC observations of the acceleration of very-high-energy cosmic rays in the Cygnus Cocoon Type Journal Article
  Year 2021 Publication Nature Astronomy Abbreviated Journal Nat. Astron.  
  Volume (up) 4 Issue Pages 465–471  
  Keywords  
  Abstract Cosmic rays with energies up to a few PeV are known to be accelerated within the Milky Way(1,2). Traditionally, it has been presumed that supernova remnants were the main source of these very-high-energy cosmic rays(3,4), but theoretically it is difficult to accelerate protons to PeV energies(5,6) and observationally there simply is no evidence of the remnants being sources of hadrons with energies above a few tens of TeV7,8. One possible source of protons with those energies is the Galactic Centre region(9). Here, we report observations of 1-100 TeV gamma rays coming from the 'Cygnus Cocoon'(10), which is a superbubble that surrounds a region of massive star formation. These gamma rays are likely produced by 10-1,000 TeV freshly accelerated cosmic rays that originate from the enclosed star-forming region Cyg OB2. Until now it was not known that such regions could accelerate particles to these energies. The measured flux likely originates from hadronic interactions. The spectral shape and the emission profile of the Cocoon changes from GeV to TeV energies, which reveals the transport of cosmic particles and historical activity in the superbubble.  
  Address [Abeysekara, A. U.; Hona, B.; Kieda, D.; Newbold, M.; Springer, R. W.] Univ Utah, Dept Phys & Astron, Salt Lake City, UT 84112 USA, Email: rdb3@stanford.edu;  
  Corporate Author Thesis  
  Publisher Nature Research Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2397-3366 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000627714400002 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 4763  
Permanent link to this record
 

 
Author Bourguille, B.; Nieves, J.; Sanchez, F. url  doi
openurl 
  Title Inclusive and exclusive neutrino-nucleus cross sections and the reconstruction of the interaction kinematics Type Journal Article
  Year 2021 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.  
  Volume (up) 04 Issue 4 Pages 004 - 42pp  
  Keywords Phenomenological Models  
  Abstract We present a full kinematic analysis of neutrino-nucleus charged current quasielastic interactions based on the Local Fermi Gas model and the Random Phase Approximation. The model was implemented in the NEUT Monte Carlo framework, which allows us to investigate potentially measurable observables, including hadron distributions. We compare the predictions simultaneously to the most recent T2K and MINERvA charged current (CC) inclusive, CC0 pi and transverse kinematic-imbalance variable results. We pursuit a microscopic interpretation of the relevant reaction mechanisms, with the aim to achieving in neutrino oscillation experiments a correct reconstruction of the incoming neutrino kinematics, free of conceptual biasses. Such study is of the utmost importance for the ambitious experimental program which is underway to precisely determine neutrino properties, test the three-generation paradigm, establish the order of mass eigenstates and investigate leptonic CP violation.  
  Address [Bourguille, B.] Univ Autonoma Barcelona, Inst Fis Altes Energies IFAE, Barcelona Inst Sci & Technol, Edifici Cn, Bellaterra, Barcelona, Spain, Email: bruno.bourguille@free.fr;  
  Corporate Author Thesis  
  Publisher Springer Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1029-8479 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000636427400001 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 4774  
Permanent link to this record
 

 
Author Ramirez-Uribe, S.; Hernandez-Pinto, R.J.; Rodrigo, G.; Sborlini, G.F.R.; Torres Bobadilla, W.J. url  doi
openurl 
  Title Universal opening of four-loop scattering amplitudes to trees Type Journal Article
  Year 2021 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.  
  Volume (up) 04 Issue 4 Pages 129 - 22pp  
  Keywords Duality in Gauge Field Theories; Perturbative QCD; Scattering Amplitudes  
  Abstract The perturbative approach to quantum field theories has made it possible to obtain incredibly accurate theoretical predictions in high-energy physics. Although various techniques have been developed to boost the efficiency of these calculations, some ingredients remain specially challenging. This is the case of multiloop scattering amplitudes that constitute a hard bottleneck to solve. In this paper, we delve into the application of a disruptive technique based on the loop-tree duality theorem, which is aimed at an efficient computation of such objects by opening the loops to nondisjoint trees. We study the multiloop topologies that first appear at four loops and assemble them in a clever and general expression, the (NMLT)-M-4 universal topology. This general expression enables to open any scattering amplitude of up to four loops, and also describes a subset of higher order configurations to all orders. These results confirm the conjecture of a factorized opening in terms of simpler known subtopologies, which also determines how the causal structure of the entire loop amplitude is characterized by the causal structure of its subtopologies. In addition, we confirm that the loop-tree duality representation of the (NMLT)-M-4 universal topology is manifestly free of noncausal thresholds, thus pointing towards a remarkably more stable numerical implementation of multiloop scattering amplitudes.  
  Address [Ramirez-Uribe, Selomit; Rodrigo, German; Sborlini, German F. R.; Bobadilla, William J. Torres] Univ Valencia, Inst Fis Corpuscular, CSIC, Parc Cient, E-46980 Valencia, Spain, Email: norma.selomit.ramirez@ific.uv.es;  
  Corporate Author Thesis  
  Publisher Springer Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1029-8479 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000641467800001 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 4787  
Permanent link to this record
 

 
Author LHCb Collaboration (Aaij, R. et al); Henry, L.; Jashal, B.K.; Martinez-Vidal, F.; Oyanguren, A.; Remon Alepuz, C.; Ruiz Vidal, J. url  doi
openurl 
  Title Measurement of CP observables in B-+/- -> D-(*K-)(+/-) and B-+/- -> D-(*())pi(+/-) decays using two-body D final states Type Journal Article
  Year 2021 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.  
  Volume (up) 04 Issue 4 Pages 081 - 36pp  
  Keywords B physics; CKM angle gamma; CP violation; Hadron-Hadron scattering (experiments)  
  Abstract Measurements of CP observables in B-+/- -> D(*) K-+/- and B-+/- -> D(*) pi(+/-) decays are presented, where D(*) indicates a neutral D or D* meson that is an admixture of meson and anti-meson states. Decays of the D(*) meson to the D pi(0) and D gamma final states are partially reconstructed without inclusion of the neutral pion or photon. Decays of the D meson are reconstructed in the K-+/-pi(-/+), K+K-, and pi(+)pi(-) final states. The analysis uses a sample of charged B mesons produced in proton-proton collisions and collected with the LHCb experiment, corresponding to integrated luminosities of 2.0, 1.0, and 5.7 fb(-1) taken at centre-of-mass energies of 7, 8, and 13TeV, respectively. The measurements of partially reconstructed B-+/- -> D(*) K-+/- and B-+/- -> D(*)pi(+/-) with D -> K--/+pi(+/-) decays are the first of their kind, and a first observation of the B-+/- -> (D pi(0)) D*pi(+/-) decay is made with a significance of 6.1 standard deviations. All CP observables are measured with world-best precision, and in combination with other LHCb results will provide strong constraints on the CKM angle gamma.  
  Address [Leite, J. Baptista; Bediaga, I; Torres, M. Cruz; De Miranda, J. M.; dos Reis, A. C.; Eklund, L.; Golutvin, A.; Gomes, A.; Massafferri, A.; Nguyen-Mau, C.; Machado, D. Torres] Ctr Brasileiro Pesquisas Fis CBPF, Rio De Janeiro, Brazil, Email: donal.hill@cern.ch  
  Corporate Author Thesis  
  Publisher Springer Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1029-8479 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000639461700001 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 4791  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records:
ific federMinisterio de Ciencia e InnovaciĆ³nAgencia Estatal de Investigaciongva