|   | 
Details
   web
Records
Author Agarwalla, S.K.; Prakash, S.; Sankar, S.U.
Title Resolving the octant of theta(23) with T2K and NOvA Type Journal Article
Year 2013 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.
Volume (down) 07 Issue 7 Pages 131 - 24pp
Keywords Neutrino Physics; CP violation; Beyond Standard Model
Abstract Preliminary results of MINOS experiment indicate that theta(23) is not maximal. Global fits to world neutrino data suggest two nearly degenerate solutions for theta(23): one in the lower octant (LO: theta(23) < 45 degrees) and the other in the higher octant (HO: theta(23) > 45 degrees). v(mu) -> v(e) oscillations in superbeam experiments are sensitive to the octant and are capable of resolving this degeneracy. We study the prospects of this resolution by the current T2K and upcoming NOvA experiments. Because of the hierarchy-delta(CP) degeneracy and the octant delta(CP) degeneracy, the impact of hierarchy on octant resolution has to be taken into account. As in the case of hierarchy determination, there exist favorable (unfavorable) values of delta(CP) for which octant resolution is easy (challenging). However, for octant resolution the unfavorable delta(CP) values of the neutrino data are favorable for the anti-neutrino data and vice-verse. This is in contrast to the case of hierarchy determination. In this paper, we compute the combined sensitivity of T2K and NOvA to resolve the octant ambiguity. If sin(2)theta(23) – 0.41, then NOvA can rule out all the values of theta(23) in HO at 2 sigma C.L., irrespective of the hierarchy and delta(CP). Addition of T2K data improves the octant sensitivity. If T2K were to have equal neutrino and anti-neutrino runs of 2.5 years each, a 2 sigma resolution of the octant becomes possible provided sin(2) theta(23) <= 0.43 or >= 0.58 for any value of delta(CP).
Address [Agarwalla, Sanjib Kumar] Inst Phys, Sainik Sch Post, Bhubaneswar 751005, Orissa, India, Email: sanjib@iopb.res.in;
Corporate Author Thesis
Publisher Springer Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1029-8479 ISBN Medium
Area Expedition Conference
Notes WOS:000323202900044 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 1570
Permanent link to this record
 

 
Author Celis, A.; Ilisie, V.; Pich, A.
Title LHC constraints on two-Higgs doublet models Type Journal Article
Year 2013 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.
Volume (down) 07 Issue 7 Pages 053 - 44pp
Keywords Higgs Physics; Beyond Standard Model
Abstract A new Higgs-like boson with mass around 126 GeV has recently been discovered at the LHC. The available data on this new particle is analyzed within the context of two-Higgs doublet models without tree-level flavour-changing neutral currents. Keeping the generic Yukawa structure of the Aligned Two-Higgs Doublet Model framework, we study the implications of the LHC data on the allowed scalar spectrum. We analyze both the CP-violating and CP-conserving cases, and a few particular limits with a reduced number of free parameters, such as the usual models based on discrete Z(2) symmetries.
Address [Celis, Alejandro; Ilisie, Victor; Pich, Antonio] Univ Valencia, CSIC, IFIC, E-46071 Valencia, Spain, Email: alejandro.celis@ific.uv.es;
Corporate Author Thesis
Publisher Springer Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1029-8479 ISBN Medium
Area Expedition Conference
Notes WOS:000323202600053 Approved no
Is ISI yes International Collaboration no
Call Number IFIC @ pastor @ Serial 1635
Permanent link to this record
 

 
Author Botella, F.J.; Branco, G.C.; Carmona, A.; Nebot, M.; Pedro, L.; Rebelo, M.N.
Title Physical constraints on a class of two-Higgs doublet models with FCNC at tree level Type Journal Article
Year 2014 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.
Volume (down) 07 Issue 7 Pages 078 - 33pp
Keywords Higgs Physics; Beyond Standard Model
Abstract We analyse the constraints and some of the phenomenological implications of a class of two Higgs doublet models where there are flavour-changing neutral currents (FCNC) at tree level but the potentially dangerous FCNC couplings are suppressed by small entries of the CKM matrix V. This class of models have the remarkable feature that, as a result of a discrete symmetry of the Lagrangian, the FCNC couplings are entirely fixed in the quark sector by V and the ratio v(2)/v(1) of the vevs of the neutral Higgs. The discrete symmetry is extended to the leptonic sector, so that there are FCNC in the leptonic sector with their flavour structure fixed by the leptonic mixing matrix. We analyse a large number of processes, including decays mediated by charged Higgs at tree level, processes involving FCNC at tree level, as well as loop induced processes. We show that in this class of models one has new physical scalars beyond the standard Higgs boson, with masses reachable at the next round of experiments.
Address [Botella, F. J.] Univ Valencia, CSIC, Dept Fis Teor, E-46100 Burjassot, Spain, Email: fbotella@uv.es;
Corporate Author Thesis
Publisher Springer Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1029-8479 ISBN Medium
Area Expedition Conference
Notes WOS:000339805600001 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 1867
Permanent link to this record
 

 
Author Agarwalla, S.K.; Bagchi, P.; Forero, D.V.; Tortola, M.
Title Probing non-standard interactions at Daya Bay Type Journal Article
Year 2015 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.
Volume (down) 07 Issue 7 Pages 060 - 33pp
Keywords Neutrino Physics; Beyond Standard Model
Abstract In this article we consider the presence of neutrino non-standard interactions (NSI) in the production and detection processes of reactor antineutrinos at the Daya Bay experiment. We report for the first time, the new constraints on the flavor non-universal and flavor universal charged-current NSI parameters, estimated using the currently released 621 days of Daya Bay data. New limits are placed assuming that the new physics effects are just inverse of each other in the production and detection processes. With this special choice of the NSI parameters, we observe a shift in the oscillation amplitude without distorting the L/E pattern of the oscillation probability. This shift in the depth of the oscillation dip can be caused by the NSI parameters as well as by theta(13), making it quite difficult to disentangle the NSI effects from the standard oscillations. We explore the correlations between the NSI parameters and theta(13) that may lead to significant deviations in the reported value of the reactor mixing angle with the help of iso-probability surface plots. Finally, we present the limits on electron, muon/tau, and flavor universal (FU) NSI couplings with and without considering the uncertainty in the normalization of the total event rates. Assuming a perfect knowledge of the event rates normalization, we find strong upper bounds similar to 0.1% for the electron and FU cases improving the present limits by one order of magnitude. However, for a conservative error of 5% in the total normalization, these constraints are relaxed by almost one order of magnitude.
Address [Agarwalla, Sanjib Kumar; Bagchi, Partha] Inst Phys, Bhubaneswar 751005, Orissa, India, Email: sanjib@iopb.res.in;
Corporate Author Thesis
Publisher Springer Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1029-8479 ISBN Medium
Area Expedition Conference
Notes WOS:000363504900001 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 2427
Permanent link to this record
 

 
Author Merle, A.; Platscher, M.; Rojas, N.; Valle, J.W.F.; Vicente, A.
Title Consistency of WIMP Dark Matter as radiative neutrino mass messenger Type Journal Article
Year 2016 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.
Volume (down) 07 Issue 7 Pages 013 - 17pp
Keywords Beyond Standard Model; Renormalization Group; Neutrino Physics; Discrete Symmetries
Abstract The scotogenic scenario provides an attractive approach to both Dark Matter and neutrino mass generation, in which the same symmetry that stabilises Dark Matter also ensures the radiative seesaw origin of neutrino mass. However the simplest scenario may suffer from inconsistencies arising from the spontaneous breaking of the underlying Z(2) symmetry. Here we show that the singlet-triplet extension of the simplest model naturally avoids this problem due to the presence of scalar triplets neutral under the Z(2) which affect the evolution of the couplings in the scalar sector. The scenario offers good prospects for direct WIMP Dark Matter detection through the nuclear recoil method.
Address [Merle, Alexander] Max Planck Inst Phys & Astrophys, Werner Heisenberg Inst, Fohringer Ring 6, D-80805 Munich, Germany, Email: amerle@mpp.mpg.de;
Corporate Author Thesis
Publisher Springer Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1029-8479 ISBN Medium
Area Expedition Conference
Notes WOS:000379170300005 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 2748
Permanent link to this record
 

 
Author Cepedello, R.; Hirsch, M.; Helo, J.C.
Title Loop neutrino masses from d=7 operator Type Journal Article
Year 2017 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.
Volume (down) 07 Issue 7 Pages 079 - 21pp
Keywords Beyond Standard Model; Neutrino Physics
Abstract We discuss the generation of small neutrino masses from d = 71 -loop diagrams. We first systematically analyze all possible d = 7 1 -loop topologies. There is a total of 48 topologies, but only 8 of these can lead to “genuine” d = 7 neutrino masses. Here, we define genuine models to be models in which neither d = 5 nor d = 7 tree -level masses nor a d = 5 1 -loop mass appear, such that the d = 7 1 -loop is the leading order contribution to the neutrino masses. All genuine models can then be organized w.r.t. their particle content. We find there is only one diagram with no representation larger than triplet, while there are 22 diagrams with quadruplets. We briefly discuss three minimal example models of this kind.
Address [Cepedello, R.; Hirsch, M.] Univ Valencia, AHEP Grp, Inst Fis Corpuscular, CSIC, Edificio Inst Paterna,Apartado 22085, E-46071 Valencia, Spain, Email: ricepe@ific.uv.es;
Corporate Author Thesis
Publisher Springer Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1029-8479 ISBN Medium
Area Expedition Conference
Notes WOS:000405916600003 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 3223
Permanent link to this record
 

 
Author Carcamo Hernandez, A.E.; Kovalenko, S.; Valle, J.W.F.; Vaquera-Araujo, C.A.
Title Predictive Pati-Salam theory of fermion masses and mixing Type Journal Article
Year 2017 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.
Volume (down) 07 Issue 7 Pages 118 - 25pp
Keywords Beyond Standard Model; Neutrino Physics
Abstract We propose a Pati-Salam extension of the standard model incorporating a flavor symmetry based on the Delta (27) group. The theory realizes a realistic Froggatt-Nielsen picture of quark mixing and a predictive pattern of neutrino oscillations. We find that, for normal neutrino mass ordering, the atmospheric angle must lie in the higher octant, CP must be violated in oscillations, and there is a lower bound for the 0 nu beta beta decay rate. For the case of inverted mass ordering, we find that the lower atmospheric octant is preferred, and that CP can be conserved in oscillations. Neutrino masses arise from a low-scale seesaw mechanism, whose messengers can be produced by a Z' portal at the LHC.
Address [Carcamo Hernandez, A. E.; Kovalenko, Sergey] Univ Tecn Federico Santa Maria, Casilla 110-V, Valparaiso, Chile, Email: antonio.carcamo@usm.cl;
Corporate Author Thesis
Publisher Springer Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1029-8479 ISBN Medium
Area Expedition Conference
Notes WOS:000406883100006 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 3237
Permanent link to this record
 

 
Author Rocha-Moran, P.; Vicente, A.
Title Lepton Flavor Violation in the singlet-triplet scotogenic model Type Journal Article
Year 2016 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.
Volume (down) 07 Issue 7 Pages 078 - 25pp
Keywords Neutrino Physics; Beyond Standard Model
Abstract We investigate lepton flavor violation (LFV) in the the singlet-triplet scotogenic model in which neutrinos acquire non-zero masses at the 1-loop level. In contrast to the most popular variant of this setup, the singlet scotogenic model, this version includes a triplet fermion as well as a triplet scalar, leading to a scenario with a richer dark matter phenomenology. Taking into account results from neutrino oscillation experiments, we explore some aspects of the LFV phenomenology of the model. In particular, we study the relative weight of the dipole operators with respect to other contributions to the LFV amplitudes and determine the most constraining observables. We show that in large portions of the parameter space, the most promising experimental perspectives are found for LFV 3-body decays and for coherent mu-e conversion in nuclei.
Address [Rocha-Moran, Paulina; Vicente, Avelino] Univ Valencia, CSIC, Inst Fis Corpuscular, Apdo 22085, E-46071 Valencia, Spain, Email: procha@th.physik.uni-bonn.de;
Corporate Author Thesis
Publisher Springer Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1029-8479 ISBN Medium
Area Expedition Conference
Notes WOS:000411315600006 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 3500
Permanent link to this record
 

 
Author Chala, M.; Krause, C.; Nardini, G.
Title Signals of the electroweak phase transition at colliders and gravitational wave observatories Type Journal Article
Year 2018 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.
Volume (down) 07 Issue 7 Pages 062 - 29pp
Keywords Beyond Standard Model; Higgs Physics
Abstract If the electroweak phase transition (EWPT) is of strongly first order due to higher dimensional operators, the scale of new physics generating them is at the TeV scale or below. In this case the effective-field theory (EFT) neglecting operators of dimension higher than six may overlook terms that are relevant for the EWPT analysis. In this article we study the EWPT in the EFT to dimension eight. We estimate the reach of the future gravitational wave observatory LISA for probing the region in which the EWPT is strongly first order and compare it with the capabilities of the Higgs measurements via double-Higgs production at current and future colliders. We also match different UV models to the previously mentioned dimension-eight EFT and demonstrate that, from the top-down point of view, the double-Higgs production is not the best signal to explore these scenarios.
Address [Chala, Mikael] Univ Durham, Phys Dept, Inst Particle Phys Phenomenol, South Rd, Durham DH1 3LE, England, Email: mikael.chala@durham.ac.uk;
Corporate Author Thesis
Publisher Springer Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1029-8479 ISBN Medium
Area Expedition Conference
Notes WOS:000438141500014 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 3655
Permanent link to this record
 

 
Author Helo, J.C.; Hirsch, M.; Wang, Z.S.
Title Heavy neutral fermions at the high-luminosity LHC Type Journal Article
Year 2018 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.
Volume (down) 07 Issue 7 Pages 056 - 23pp
Keywords Beyond Standard Model; Neutrino Physics; Supersymmetric Standard Model
Abstract Long-lived light particles (LLLPs) appear in many extensions of the standard model. LLLPs are usually motivated by the observed small neutrino masses, by dark matter or both. Typical examples for fermionic LLLPs (a.k.a. heavy neutral fermions, HNFs) are sterile neutrinos or the lightest neutralino in R-parity violating supersymmetry. The high luminosity LHC is expected to deliver up to 3/ab of data. Searches for LLLPs in dedicated experiments at the LHC could then probe the parameter space of LLLP models with unprecedented sensitivity. Here, we compare the prospects of several recent experimental proposals, FASER, CODEX-b and MATHUSLA, to search for HNFs and discuss their relative merits.s
Address [Helo, Juan Carlos] Univ La Serena, Fac Ciencias, Dept Fis, Ave Cisternas 1200, La Serena, Chile, Email: jchelo@userena.cl;
Corporate Author Thesis
Publisher Springer Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1029-8479 ISBN Medium
Area Expedition Conference
Notes WOS:000438141500008 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 3656
Permanent link to this record