|   | 
Details
   web
Records
Author Davesne, D.; Navarro, J.; Meyer, J.; Bennaceur, K.; Pastore, A.
Title Two-body contributions to the effective mass in nuclear effective interactions Type Journal Article
Year 2018 Publication Physical Review C Abbreviated Journal Phys. Rev. C
Volume (down) 97 Issue 4 Pages 044304 - 7pp
Keywords
Abstract Starting from general expressions of well-chosen symmetric nuclear matter quantities derived for both zero-and finite-range effective theories, we derive some universal relations between them. We first showthat, independently of the range, the two-body contribution is enough to describe correctly the saturation mechanism but gives an effective mass value around m(*)/m similar or equal to 0.4 when the other properties of the saturation point are set near their generally accepted values. Then, we show that a more elaborated interaction (for instance, an effective two-body density-dependent term on top of the pure two-body term) is needed to reach the accepted value m(*)/m similar or equal to 0.7-0.8.
Address [Davesne, D.; Meyer, J.; Bennaceur, K.] Univ Claude Bernard Lyon 1, Univ Lyon, CNRS, IPNL,UMR 5822, 4 Rue E Fermi, F-69622 Villeurbanne, France, Email: davesne@ipnl.in2p3.fr;
Corporate Author Thesis
Publisher Amer Physical Soc Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2469-9985 ISBN Medium
Area Expedition Conference
Notes WOS:000429456600002 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 3554
Permanent link to this record
 

 
Author n_TOF Collaboration (Mendoza, E. et al); Giubrone, G.; Tain, J.L.; Tarifeño-Saldivia, A.
Title Measurement and analysis of the Am-241 neutron capture cross section at the n_TOF facility at CERN Type Journal Article
Year 2018 Publication Physical Review C Abbreviated Journal Phys. Rev. C
Volume (down) 97 Issue 5 Pages 054616 - 21pp
Keywords
Abstract The Am-241(n, gamma) cross section has been measured at the nTOF facility at CERN with the nTOF BaF2 Total Absorption Calorimeter in the energy range between 0.2 eV and 10 keV. Our results are analyzed as resolved resonances up to 700 eV, allowing a more detailed description of the cross section than in the current evaluations, which contain resolved resonances only up to 150-160 eV. The cross section in the unresolved resonance region is perfectly consistent with the predictions based on the average resonance parameters deduced from the resolved resonances, thus obtaining a consistent description of the cross section in the full neutron energy range under study. Below 20 eV, our results are in reasonable agreement with JEFF-3.2 as well as with the most recent direct measurements of the resonance integral, and differ up to 20-30% with other experimental data. Between 20 eV and 1 keV, the disagreement with other experimental data and evaluations gradually decreases, in general, with the neutron energy. Above 1 keV, we find compatible results with previously existing values.
Address [Mendoza, E.; Cano-Ott, D.; Balibrea, J.; Becares, V; Garcia, A. R.; Gonzalez, E.; Lopez, D.; Martinez, T.] Ctr Invest Energet Medioambientales & Tecnol CIEM, Madrid, Spain, Email: emilio.mendoza@ciemat.es
Corporate Author Thesis
Publisher Amer Physical Soc Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2469-9985 ISBN Medium
Area Expedition Conference
Notes WOS:000433032300001 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 3584
Permanent link to this record
 

 
Author n_TOF Collaboration (Praena, J. et al); Domingo-Pardo, C.; Giubrone, G.; Tain, J.L.; Tarifeño-Saldivia, A.
Title Measurement and resonance analysis of the S-33(n,alpha)Si-30 cross section at the CERN n_TOF facility in the energy region from 10 to 300 keV Type Journal Article
Year 2018 Publication Physical Review C Abbreviated Journal Phys. Rev. C
Volume (down) 97 Issue 6 Pages 064603 - 10pp
Keywords
Abstract The (33)(n , alpha)Si-30 cross section has been measured at the neutron time-of-flight (n_TOF) facility at CERN in the neutron energy range from 10 to 300 keV relative to the B-10(n, alpha)(7) Li cross-section standard. Both reactions were measured simultaneously with a set of micromegas detectors. The flight path of 185 m has allowed us to obtain the cross section with high-energy resolution. An accurate description of the resonances has been performed by means of the multilevel multichannel R-matrix code SAMMY. The results show a significantly higher area of the biggest resonance (13.45 keV) than the unique high-resolution (n , alpha) measurement. The new parametrization of the 13.45-keV resonance is similar to that of the unique transmission measurement. This resonance is a matter of research in neutron-capture therapy. The S-33(n, alpha)Si-30 cross section has been studied in previous works because of its role in the production of S-36 in stars, which is currently overproduced in stellar models compared to observations.
Address [Praena, J.; Porras, I] Univ Granada, Granada, Spain, Email: jpraena@ugr.es
Corporate Author Thesis
Publisher Amer Physical Soc Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2469-9985 ISBN Medium
Area Expedition Conference
Notes WOS:000434017300004 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 3597
Permanent link to this record
 

 
Author Song, T.; Berrehrah, H.; Torres-Rincon, J.M.; Tolos, L.; Cabrera, D.; Cassing, W.; Bratkovskaya, E.
Title Single electrons from heavy-flavor mesons in relativistic heavy-ion collisions Type Journal Article
Year 2017 Publication Physical Review C Abbreviated Journal Phys. Rev. C
Volume (down) 96 Issue 1 Pages 014905 - 18pp
Keywords
Abstract We study the single electron spectra from D- and B-meson semileptonic decays in Au + Au collisions at root s(NN) = 200, 62.4, and 19.2 GeV by employing the parton-hadron-string dynamics (PHSD) transport approach that has been shown to reasonably describe the charm dynamics at Relativistic Heavy Ion Collider and Large Hadron Collider energies on a microscopic level. In this approach the initial charm and bottom quarks are produced by using the PYTHIA event generator which is tuned to reproduce the fixed-order next-to-leading logarithm calculations for charm and bottom production. The produced charm and bottom quarks interact with off-shell (massive) partons in the quark-gluon plasma with scattering cross sections which are calculated in the dynamical quasiparticle model that is matched to reproduce the equation of state of the partonic system above the deconfinement temperature T-c. At energy densities close to the critical energy density (approximate to 0.5 GeV/fm(3)) the charm and bottom quarks are hadronized intoD and B mesons through either coalescence or fragmentation. After hadronization the D and B mesons interact with the light hadrons by employing the scattering cross sections from an effective Lagrangian. The final D and B mesons then produce single electrons through semileptonic decay. We find that the PHSD approach well describes the nuclear modification factor R-AA and elliptic flow upsilon(2) of single electrons in d + Au and Au + Au collisions at root s(NN) = 200 GeV and the elliptic flow in Au + Au reactions at root s(NN) = 62.4 GeV from the PHENIX Collaboration, however, the large RAA at root s(NN) = 62.4 GeV is not described at all. Furthermore, we make predictions for the RAA of D mesons and of single electrons at the lower energy of root s(NN) = 19.2 GeV. Additionally, the medium modification of the azimuthal angle phi between a heavy quark and a heavy antiquark is studied. We find that the transverse flow enhances the azimuthal angular distributions close to phi = 0 because the heavy flavors strongly interact with nuclear medium in relativistic heavy-ion collisions and almost flow with the bulk matter.
Address [Song, Taesoo; Berrehrah, Hamza; Bratkovskaya, Elena] Goethe Univ Frankfurt, Inst Theoret Phys, Frankfurt, Germany, Email: song@fias.uni-frankfurt.de
Corporate Author Thesis
Publisher Amer Physical Soc Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2469-9985 ISBN Medium
Area Expedition Conference
Notes WOS:000405203800005 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 3202
Permanent link to this record
 

 
Author Rocco, N.; Alvarez-Ruso, L.; Lovato, A.; Nieves, J.
Title Electromagnetic scaling functions within the Green's function Monte Carlo approach Type Journal Article
Year 2017 Publication Physical Review C Abbreviated Journal Phys. Rev. C
Volume (down) 96 Issue 1 Pages 015504 - 12pp
Keywords
Abstract We have studied the scaling properties of the electromagnetic response functions of He-4 and C-12 nuclei computed by the Green's function Monte Carlo approach, retaining only the one-body current contribution. Longitudinal and transverse scaling functions have been obtained in the relativistic and nonrelativistic cases and compared to experiment for various kinematics. The characteristic asymmetric shape of the scaling function exhibited by data emerges in the calculations in spite of the nonrelativistic nature of the model. The results are mostly consistent with scaling of zeroth, first, and second kinds. Our analysis reveals a direct correspondence between the scaling and the nucleon-density response functions. The scaling function obtained from the proton-density response displays scaling of the first kind, even more evidently than the longitudinal and transverse scaling functions.
Address [Rocco, N.; Alvarez-Ruso, L.; Nieves, J.] Univ Valencia, CSIC, Ctr Mixto, Inst Fis Corpuscular IFIC, E-46071 Valencia, Spain
Corporate Author Thesis
Publisher Amer Physical Soc Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2469-9985 ISBN Medium
Area Expedition Conference
Notes WOS:000406294000008 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 3217
Permanent link to this record