|   | 
Details
   web
Records
Author Escrihuela, F.J.; Forero, D.V.; Miranda, O.G.; Tortola, M.; Valle, J.W.F.
Title Probing CP violation with non-unitary mixing in long-baseline neutrino oscillation experiments: DUNE as a case study Type Journal Article
Year 2017 Publication New Journal of Physics Abbreviated Journal New J. Phys.
Volume (down) 19 Issue Pages 093005 - 14pp
Keywords neutrino masses and mixings; neutrino oscillations; neutrino interactions
Abstract When neutrino masses arise from the exchange of neutral heavy leptons, as in most seesaw schemes, the effective lepton mixing matrix N describing neutrino propagation is non-unitary, hence neutrinos are not exactly orthonormal. New CP violation phases appear in N that could be confused with the standard phase delta(CP) characterizing the three neutrino paradigm. We study the potential of the long-baseline neutrino experiment DUNE in probing CP violation induced by the standard CP phase in the presence of non-unitarity. In order to accomplish this we develop our previous formalism, so as to take into account the neutrino interactions with the medium, important in long baseline experiments such as DUNE. We find that the expected CP sensitivity of DUNE is somewhat degraded with respect to that characterizing the standard unitary case. However the effect is weaker than might have been expected thanks mainly to the wide neutrino beam. We also investigate the sensitivity of DUNE to the parameters characterizing non-unitarity. In this case we find that there is no improvement expected with respect to the current situation, unless the near detector setup is revamped.
Address [Escrihuela, F. J.; Tortola, M.; Valle, J. W. F.] Univ Valencia, CSIC, Inst Fis Corpuscular, AHEP Grp, Parc Cient Paterna,C Catedrat Jose Beltran 2, E-46980 Paterna, Valencia, Spain, Email: franesfe@alumni.uv.es;
Corporate Author Thesis
Publisher Iop Publishing Ltd Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1367-2630 ISBN Medium
Area Expedition Conference
Notes WOS:000410457100001 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 3292
Permanent link to this record
 

 
Author Bonilla, C.; Romao, J.C.; Valle, J.W.F.
Title Electroweak breaking and neutrino mass: `invisible' Higgs decays at the LHC (type II seesaw) Type Journal Article
Year 2016 Publication New Journal of Physics Abbreviated Journal New J. Phys.
Volume (down) 18 Issue Pages 033033 - 21pp
Keywords neutrino mass; invisible Higgs decays; Higgs physics
Abstract Neutrino mass generation through the Higgs mechanism not only suggests the need to reconsider the physics of electroweak symmetry breaking from a new perspective, but also provides a new theoretically consistent and experimentally viable paradigm. We illustrate this by describing the main features of the electroweak symmetry breaking sector of the simplest type-II seesaw model with spontaneous breaking of lepton number. After reviewing the relevant `theoretical' and astrophysical restrictions on the Higgs sector, we perform an analysis of the sensitivities of Higgs Boson searches at the ongoing ATLAS and CMS experiments at the LHC, including not only the new contributions to the decay channels present in the standard model (SM) but also genuinely non-SM Higgs Boson decays, such as `invisible' Higgs Boson decays to majorons. We find sensitivities that are likely to be reached at the upcoming run of the experiments.
Address [Bonilla, Cesar; Valle, Jose W. F.] Univ Valencia, CSIC, Inst Fis Corpuscular, AHEP Grp, Edificio Inst Paterna,C Catedrat Jose Beltran 2, E-46980 Paterna, Valencia, Spain, Email: cesar.bonilla@ific.uv.es;
Corporate Author Thesis
Publisher Iop Publishing Ltd Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1367-2630 ISBN Medium
Area Expedition Conference
Notes WOS:000373727500002 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 2621
Permanent link to this record
 

 
Author Di Molfetta, G.; Perez, A.
Title Quantum walks as simulators of neutrino oscillations in a vacuum and matter Type Journal Article
Year 2016 Publication New Journal of Physics Abbreviated Journal New J. Phys.
Volume (down) 18 Issue Pages 103038 - 8pp
Keywords quantum walks; neutrino oscillations; quantum simulation
Abstract We analyze the simulation of Dirac neutrino oscillations using quantum walks, both in a vacuum and in matter. We show that this simulation, in the continuum limit, reproduces a set of coupled Dirac equations that describe neutrino flavor oscillations, and we make use of this to establish a connection with neutrino phenomenology, thus allowing one to fix the parameters of the simulation for a given neutrino experiment. We also analyze how matter effects for neutrino propagation can be simulated in the quantum walk. In this way, important features, such as the MSW effect, can be incorporated. Thus, the simulation of neutrino oscillations with the help of quantum walks might be useful to illustrate these effects in extreme conditions, such as the solar interior or supernovae.
Address [Di Molfetta, G.] Univ Valencia, CSIC, Dept Fis Teor, Dr Moliner 50, E-46100 Burjassot, Spain, Email: giuseppe.dimolfetta@lif.univ-mrs.fr
Corporate Author Thesis
Publisher Iop Publishing Ltd Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1367-2630 ISBN Medium
Area Expedition Conference
Notes WOS:000386816100004 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 2846
Permanent link to this record
 

 
Author Super-Kamiokande Collaboration (Abe, K. et al); Molina Sedgwick, S.
Title Neutron tagging following atmospheric neutrino events in a water Cherenkov detector Type Journal Article
Year 2022 Publication Journal of Instrumentation Abbreviated Journal J. Instrum.
Volume (down) 17 Issue 10 Pages P10029 - 41pp
Keywords Particle identification methods; Cherenkov detectors; Neutrino detectors; Large detector systems for particle and astroparticle physics
Abstract We present the development of neutron-tagging techniques in Super-Kamiokande IV using a neural network analysis. The detection efficiency of neutron capture on hydrogen is estimated to be 26%, with a mis-tag rate of 0.016 per neutrino event. The uncertainty of the tagging efficiency is estimated to be 9.0%. Measurement of the tagging efficiency with data from an Americium-Beryllium calibration agrees with this value within 10%. The tagging procedure was performed on 3,244.4 days of SK-IV atmospheric neutrino data, identifying 18,091 neutrons in 26,473 neutrino events. The fitted neutron capture lifetime was measured as 218 +/- 9 μs.
Address [Abe, K.; Haga, Y.; Hayato, Y.; Hiraide, K.; Ieki, K.; Ikeda, M.; Imaizumi, S.; Iyogi, K.; Kameda, J.; Kanemura, Y.; Kataoka, Y.; Kato, Y.; Kishimoto, Y.; Miki, S.; Mine, S.; Miura, M.; Mochizuki, T.; Moriyama, S.; Nagao, Y.; Nakahata, M.; Nakajima, T.; Nakano, Y.; Nakayama, S.; Okada, T.; Okamoto, K.; Orii, A.; Sato, K.; Sekiya, H.; Shiozawa, M.; Sonoda, Y.; Suzuki, Y.; Takeda, A.; Takemoto, Y.; Takenaka, A.; Tanaka, H.; Tasaka, S.; Tomura, T.; Ueno, K.; Watanabe, S.; Yano, T.; Yokozawa, T.] Univ Tokyo, Inst Cosm Ray Res, Kamioka Observ, Gifu, Akita 5061205, Japan, Email: hayato@icrr.u-tokyo.ac.jp
Corporate Author Thesis
Publisher IOP Publishing Ltd Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1748-0221 ISBN Medium
Area Expedition Conference
Notes WOS:000898723700008 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 5441
Permanent link to this record
 

 
Author T2K Collaboration (Abe, K. et al); Antonova, M.; Cervera-Villanueva, A.; Molina Bueno, L.; Novella, P.
Title Scintillator ageing of the T2K near detectors fro 2010 to 2021 Type Journal Article
Year 2022 Publication Journal of Instrumentation Abbreviated Journal J. Instrum.
Volume (down) 17 Issue 10 Pages P10028 - 36pp
Keywords Gamma detectors (scintillators, CZT, HPGe, HgI etc); Neutrino detectors; Performance of High Energy Physics Detectors; Scintillators; scintillation and light emission processes (solid, gas and liquid scintillators)
Abstract The T2K experiment widely uses plastic scintillator as a target for neutrino interactions and an active medium for the measurement of charged particles produced in neutrino interactions at its near detector complex. Over 10 years of operation the measured light yield recorded by the scintillator based subsystems has been observed to degrade by 0.9-2.2% per year. Extrapolation of the degradation rate through to 2040 indicates the recorded light yield should remain above the lower threshold used by the current reconstruction algorithms for all subsystems. This will allow the near detectors to continue contributing to important physics measurements during the T2K-II and Hyper-Kamiokande eras. Additionally, work to disentangle the degradation of the plastic scintillator and wavelength shifting fibres shows that the reduction in light yield can be attributed to the ageing of the plastic scintillator. The long component of the attenuation length of the wavelength shifting fibres was observed to degrade by 1.3-5.4% per year, while the short component of the attenuation length did not show any conclusive degradation.
Address [Labarga, L.] Univ Autonoma Madrid, Dept Theoret Phys, ES-28049 Madrid, Spain, Email: m.lawe@lancaster.ac.uk
Corporate Author Thesis
Publisher IOP Publishing Ltd Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1748-0221 ISBN Medium
Area Expedition Conference
Notes WOS:000898723700007 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 5442
Permanent link to this record
 

 
Author KM3NeT Collaboration (Aiello, S. et al); Alves Garre, S.; Calvo, D.; Carretero, V.; Colomer, M.; Garcia Soto, A.; Gozzini, S.R.; Hernandez-Rey, J.J.; Khan Chowdhury, N.R.; Lazo, A.; Manczak, J.; Palacios Gonzalez, J.; Pieterse, C.; Real, D.; Salesa Greus, F.; Sanchez Losa, A.; Zornoza, J.D.; Zuñiga, J.
Title The KM3NeT multi-PMT optical module Type Journal Article
Year 2022 Publication Journal of Instrumentation Abbreviated Journal J. Instrum.
Volume (down) 17 Issue 7 Pages P07038 - 28pp
Keywords Cherenkov detectors; Large detector systems for particle and astroparticle physics; Neutrino detectors
Abstract The optical module of the KM3NeT neutrino telescope is an innovative multi-faceted large area photodetection module. It contains 31 three-inch photomultiplier tubes in a single 0.44 m diameter pressure-resistant glass sphere. The module is a sensory device also comprising calibration instruments and electronics for power, readout and data acquisition. It is capped with a breakout-box with electronics for connection to an electro-optical cable for power and long-distance communication to the onshore control station. The design of the module was qualified for the first time in the deep sea in 2013. Since then, the technology has been further improved to meet requirements of scalability, cost-effectiveness and high reliability. The module features a sub-nanosecond timing accuracy and a dynamic range allowing the measurement of a single photon up to a cascade of thousands of photons, suited for the measurement of the Cherenkov radiation induced in water by secondary particles from interactions of neutrinos with energies in the range of GeV to PeV. A distributed production model has been implemented for the delivery of more than 6000 modules in the coming few years with an average production rate of more than 100 modules per month. In this paper a review is presented of the design of the multi-PMT KM3NeT optical module with a proven effective background suppression and signal recognition and sensitivity to the incoming direction of photons.
Address [Aiello, S.; Bruno, R.; Leonora, E.; Longhitano, F.; Randazzo, N.] Ist Nazl Fis Nucl, Sez Catania, Via Santa Sofia 64, I-95123 Italy, Italy, Email: km3net-pc@km3net.de
Corporate Author Thesis
Publisher IOP Publishing Ltd Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1748-0221 ISBN Medium
Area Expedition Conference
Notes WOS:000898568200003 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 5449
Permanent link to this record
 

 
Author Lesgourgues, J.; Pastor, S.
Title Neutrino cosmology and Planck Type Journal Article
Year 2014 Publication New Journal of Physics Abbreviated Journal New J. Phys.
Volume (down) 16 Issue Pages 065002 - 24pp
Keywords neutrino masses; cosmology; dark matter
Abstract Relic neutrinos play an important role in the evolution of the Universe, modifying some of the cosmological observables. We summarize the main aspects of cosmological neutrinos and describe how the precision of present cosmological data can be used to learn about neutrino properties. In particular, we discuss how cosmology provides information on the absolute scale of neutrino masses, complementary to beta decay and neutrinoless double-beta decay experiments. We explain why the combination of Planck temperature data with measurements of the baryon acoustic oscillation angular scale provides a strong bound on the sum of neutrino masses, 0.23 eV at the 95% confidence level, while the lensing potential spectrum and the cluster mass function measured by Planck are compatible with larger values. We also review the constraints from current data on other neutrino properties. Finally, we describe the very good perspectives from future cosmological measurements, which are expected to be sensitive to neutrino masses close to the minimum values guaranteed by flavour oscillations.
Address [Lesgourgues, Julien] Ecole Polytech Fed Lausanne, Inst Theorie Phenomenes Phys, CH-1015 Lausanne, Switzerland, Email: Julien.Lesgourgues@cern.ch;
Corporate Author Thesis
Publisher Iop Publishing Ltd Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1367-2630 ISBN Medium
Area Expedition Conference
Notes WOS:000339083500001 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 1854
Permanent link to this record
 

 
Author Alvarez-Ruso, L.; Hayato, Y.; Nieves, J.
Title Progress and open questions in the physics of neutrino cross sections at intermediate energies Type Journal Article
Year 2014 Publication New Journal of Physics Abbreviated Journal New J. Phys.
Volume (down) 16 Issue Pages 075015 - 62pp
Keywords neutrino cross sections; oscillation experiments; electroweak hadronic form factors; nuclear effects
Abstract New and more precise measurements of neutrino cross sections have renewed interest in a better understanding of electroweak interactions on nucleons and nuclei. This effort is crucial to achieving the precision goals of the neutrino oscillation program, making new discoveries, like the CP violation in the leptonic sector, possible. We review the recent progress in the physics of neutrino cross sections, putting emphasis on the open questions that arise in the comparison with new experimental data. Following an overview of recent neutrino experiments and future plans, we present some details about the theoretical development in the description of (anti) neutrino-induced quasielastic (QE) scattering and the role of multi-nucleon QE-like mechanisms. We cover not only pion production in nucleons and nuclei but also other inelastic channels including strangeness production and photon emission. Coherent reaction channels on nuclear targets are also discussed. Finally, we briefly describe some of the Monte Carlo event generators, which are at the core of all neutrino oscillation and cross-section measurements.
Address [Alvarez-Ruso, L.; Nieves, J.] Univ Valencia, Ctr Mixto CSIC, Inst Fis Corpuscular IFIC, E-46071 Valencia, Spain, Email: luis.alvarez@ific.uv.es
Corporate Author Thesis
Publisher Iop Publishing Ltd Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1367-2630 ISBN Medium
Area Expedition Conference
Notes WOS:000341829000001 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 1927
Permanent link to this record
 

 
Author Lattanzi, M.; Lineros, R.A.; Taoso, M.
Title Connecting neutrino physics with dark matter Type Journal Article
Year 2014 Publication New Journal of Physics Abbreviated Journal New J. Phys.
Volume (down) 16 Issue Pages 125012 - 19pp
Keywords neutrinos; dark matter; flavour; majoron; sterile neutrinos
Abstract The origin of neutrino masses and the nature of dark matter are two in most pressing open questions in modern astro-particle physics. We consider here the possibility that these two problems are related, and review some theoretical scenarios which offer common solutions. A simple possibility is that the dark matter particle emerges in minimal realizations of the seesaw mechanism, as in the majoron and sterile neutrino scenarios. We present the theoretical motivation for both models and discuss their phenomenology, confronting the predictions of these scenarios with cosmological and astrophysical observations. Finally, we discuss the possibility that the stability of dark matter originates from a flavor symmetry of the leptonic sector. We review a proposal based on an A(4) flavor symmetry.
Address [Lattanzi, Massimiliano] Univ Ferrara, Dipartimento Fis & Sci Terra, I-44122 Ferrara, Italy, Email: lattanzi@fe.infn.it;
Corporate Author Thesis
Publisher Iop Publishing Ltd Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1367-2630 ISBN Medium
Area Expedition Conference
Notes WOS:000346823200001 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 2062
Permanent link to this record
 

 
Author ANTARES Collaboration (Albert, A. et al); Barrios-Marti, J.; Hernandez-Rey, J.J.; Illuminati, G.; Lotze, M.; Tönnis, C.; Zornoza, J.D.; Zuñiga, J.
Title Search for dark matter annihilation in the earth using the ANTARES neutrino telescope Type Journal Article
Year 2017 Publication Physics of the Dark Universe Abbreviated Journal Phys. Dark Universe
Volume (down) 16 Issue Pages 41-48
Keywords Dark matter; Neutrino telescope; ANTARES; Indirect detection; WIMP
Abstract A search for a neutrino signal from WIMP pair annihilations in the centre of the Earth has been performed with the data collected with the ANTARES neutrino telescope from 2007 to 2012. The event selection criteria have been developed and tuned to maximise the sensitivity of the experiment to such a neutrino signal. No significant excess of neutrinos over the expected background has been observed. Upper limits at 90% C.L. on the WIMP annihilation rate in the Earth and the spin independent scattering cross-section of WIMPs to nucleons sigma(SI)(p) were calculated for WIMP pair annihilations into either iota(+) iota(-), W+W-, b (b) over bar or the non-SUSY v mu(v) over bar as a function of the WIMP mass (between 25 GeV/c(2) and 1000 GeV/c(2)) and as a function of the thermally averaged annihilation cross section times velocity <sigma A(v)>(Earth) of the WIMPs in the centre of the Earth. For masses of the WIMP close to the mass of iron nuclei (50 GeV/c(2)), the obtained limits on sigma(SI)(p) are more stringent than those obtained by other indirect searches.
Address [Albert, A.; Drouhin, D.; Racca, C.] Univ Haute Alsace, GRPHE, Inst Univ Technol Colmar, 34 Rue Grillenbreit BP 50568, F-68008 Colmar, France, Email: antares.spokesperson@in2p3.fr
Corporate Author Thesis
Publisher Elsevier Science Bv Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2212-6864 ISBN Medium
Area Expedition Conference
Notes WOS:000405461200006 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 3201
Permanent link to this record