|   | 
Details
   web
Records
Author Brzezinski, K.; Oliver, J.F.; Gillam, J.; Rafecas, M.; Studen, A.; Grkovski, M.; Kagan, H.; Smith, S.; Llosa, G.; Lacasta, C.; Clinthorne, N.H.
Title Experimental evaluation of the resolution improvement provided by a silicon PET probe Type Journal Article
Year 2016 Publication Journal of Instrumentation Abbreviated Journal J. Instrum.
Volume (up) 11 Issue Pages P09016 - 13pp
Keywords Gamma camera; SPECT; PET PET/CT; coronary CT angiography (CTA); Medical-image reconstruction methods and algorithms; computer-aided software
Abstract A high-resolution PET system, which incorporates a silicon detector probe into a conventional PET scanner, has been proposed to obtain increased image quality in a limited region of interest. Detailed simulation studies have previously shown that the additional probe information improves the spatial resolution of the reconstructed image and increases lesion detectability, with no cost to other image quality measures. The current study expands on the previous work by using a laboratory prototype of the silicon PET-probe system to examine the resolution improvement in an experimental setting. Two different versions of the probe prototype were assessed, both consisting of a back-to-back pair of 1-mm thick silicon pad detectors, one arranged in 32 x 16 arrays of 1.4mm x 1.4mm pixels and the other in 40 x 26 arrays of 1.0mm x 1.0mm pixels. Each detector was read out by a set of VATAGP7 ASICs and a custom-designed data acquisition board which allowed trigger and data interfacing with the PET scanner, itself consisting of BGO block detectors segmented into 8 x 6 arrays of 6mm x 12mm x 30mm crystals. Limited-angle probe data was acquired from a group of Na-22 point-like sources in order to observe the maximum resolution achievable using the probe system. Data from a Derenzo-like resolution phantom was acquired, then scaled to obtain similar statistical quality as that of previous simulation studies. In this case, images were reconstructed using measurements of the PET ring alone and with the inclusion of the probe data. Images of the Na-22 source demonstrated a resolution of 1.5mm FWHM in the probe data, the PET ring resolution being approximately 6 mm. Profiles taken through the image of the Derenzo-like phantom showed a clear increase in spatial resolution. Improvements in peak-to-valley ratios of 50% and 38%, in the 4.8mm and 4.0mm phantom features respectively, were observed, while previously unresolvable 3.2mm features were brought to light by the addition of the probe. These results support the possibility of improving the image resolution of a clinical PET scanner using the silicon PET-probe.
Address [Brzezinski, K.; Oliver, J. F.; Gillam, J.; Rafecas, M.; Llosa, G.; Lacasta, C.] Univ Valencia, CSIC, Inst Fis Corpuscular, C Catedrat Jose Beltran 2, Valencia, Spain, Email: k.w.brzezinski@rug.nl
Corporate Author Thesis
Publisher Iop Publishing Ltd Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1748-0221 ISBN Medium
Area Expedition Conference
Notes WOS:000387862300016 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 2865
Permanent link to this record
 

 
Author Gomez-Cadenas, J.J.; Benlloch-Rodriguez, J.M.; Ferrario, P.; Monrabal, F.; Rodriguez, J.; Toledo, J.F.
Title Investigation of the coincidence resolving time performance of a PET scanner based on liquid xenon: a Monte Carlo study Type Journal Article
Year 2016 Publication Journal of Instrumentation Abbreviated Journal J. Instrum.
Volume (up) 11 Issue Pages P09011 - 18pp
Keywords Gamma camera; SPECT; PET PET/CT; coronary CT angiography (CTA); Instrumentation and methods for time-of-flight (TOF) spectroscopy; Noble liquid detectors (scintillation ionization, double-phase); Scintillators; scintillation and light emission processes (solid, gas and liquid scintillators)
Abstract The measurement of the time of flight of the two 511 keV gammas recorded in coincidence in a PET scanner provides an effective way of reducing the random background and therefore increases the scanner sensitivity, provided that the coincidence resolving time (CRT) of the gammas is sufficiently good. The best commercial PET-TOF system today (based in LYSO crystals and digital SiPMs), is the VEREOS of Philips, boasting a CRT of 316 ps (FWHM). In this paper we present a Monte Carlo investigation of the CRT performance of a PET scanner exploiting the scintillating properties of liquid xenon. We find that an excellent CRT of 70 ps (depending on the PDE of the sensor) can be obtained if the scanner is instrumented with silicon photomultipliers (SiPMs) sensitive to the ultraviolet light emitted by xenon. Alternatively, a CRT of 160 ps can be obtained instrumenting the scanner with (much cheaper) blue-sensitive SiPMs coated with a suitable wavelength shifter. These results show the excellent time of flight capabilities of a PET device based in liquid xenon.
Address [Gomez-Cadenas, J. J.; Benlloch-Rodriguez, J. M.; Ferrario, P.; Rodriguez, J.] CSIC, Inst Fis Corpuscular IFIC, Calle Catedrat Jose Beltran 2, Valencia 46980, Spain, Email: paola.ferrario@ific.uv.es
Corporate Author Thesis
Publisher Iop Publishing Ltd Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1748-0221 ISBN Medium
Area Expedition Conference
Notes WOS:000387862300011 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 2866
Permanent link to this record
 

 
Author Lopez-Ibañez, M.L.; Melis, A.; Jay Perez, M.; Vives, O.
Title Slepton non-universality in the flavor-effective MSSM Type Journal Article
Year 2017 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.
Volume (up) 11 Issue 11 Pages 162 - 27pp
Keywords Quark Masses and SM Parameters; Supersymmetric Standard Model; Super-symmetry Breaking; Supersymmetric Effective Theories
Abstract Supersymmetric theories supplemented by an underlying flavor-symmetry G(f) provide a rich playground for model building aimed at explaining the flavor structure of the Standard Model. In the case where supersymmetry breaking is mediated by gravity, the soft-breaking Lagrangian typically exhibits large tree-level flavor violating e ff ects, even if it stems from an ultraviolet flavor-conserving origin. Building on previous work, we continue our phenomenological analysis of these models with a particular emphasis on leptonicflavor observables. We consider three representative models which aim to explain the flavor structure of the lepton sector, with symmetry groups G(f) = Delta (27), A(4); and S-3.
Address [Luisa Lopez-Ibanez, M.; Melis, Aurora; Jay Perez, M.; Vives, Oscar] Univ Valencia, Dept Fis Teor, Dr Moliner 50, Burjassot, Valencia, Spain, Email: m.luisa.lopez-ibanez@uv.es;
Corporate Author Thesis
Publisher Springer Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1029-8479 ISBN Medium
Area Expedition Conference
Notes WOS:000416356500006 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 3382
Permanent link to this record
 

 
Author LHCb Collaboration (Aaij, R. et al); Garcia Martin, L.M.; Henry, L.; Martinez-Vidal, F.; Oyanguren, A.; Remon Alepuz, C.; Ruiz Valls, P.; Ruiz Vidal, J.; Sanchez Mayordomo, C.
Title Measurement of CP observables in B-+/- -> DK*(+/-) decays using two- and four-body D final states Type Journal Article
Year 2017 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.
Volume (up) 11 Issue 11 Pages 156 - 27pp
Keywords B physics; CKM angle gamma; CP violation; Hadron-Hadron scattering (experiments)
Abstract Measurements of CP observables in B-+/- -> DK*(+/-) decays are presented, where D denotes a superposition of D-0 and (D) over bar (0) meson states. Decays of the D meson to K-pi(+), K-K+, pi(-)pi(+), K-pi(+)pi(-)pi(+) and pi(-)pi(+)pi(-)pi(+) are used and the K*(+/-) meson is reconstructed in the K-S(0)pi(+/-) final state. This analysis uses a data sample of pp collisions collected with the LHCb experiment, corresponding to integrated luminosities of 1 fb(-1), 2 fb(-1) and 1.8 fb(-1) at centre-of-mass energies root s = 7TeV, 8TeV and 13TeV, respectively. The sensitivity of the results to the CKM angle gamma is discussed.
Address [Bediaga, I.; Cruz Torres, M.; De Miranda, J. M.; Gomes, A.; Massafferri, A.; Molina Rodriguez, J.; dos Reis, A. C.; Rodrigues, A. B.; Salustino Guimaraes, V.; Soares Lavra, L.; Tourinho Jadallah Aoude, R.] CBPF, Rio De Janeiro, Brazil, Email: anita.nandi@physics.ox.ac.uk
Corporate Author Thesis
Publisher Springer Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1029-8479 ISBN Medium
Area Expedition Conference
Notes WOS:000416355700010 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 3387
Permanent link to this record
 

 
Author Bernabeu, J.; Navarro-Salas, J.
Title A Non-Local Action for Electrodynamics: Duality Symmetry and the Aharonov-Bohm Effect, Revisited Type Journal Article
Year 2019 Publication Symmetry-Basel Abbreviated Journal Symmetry-Basel
Volume (up) 11 Issue 10 Pages 1191 - 13pp
Keywords non-local action; electrodynamics; electromagnetic duality symmetry; Aharonov-Bohm effect
Abstract A non-local action functional for electrodynamics depending on the electric and magnetic fields, instead of potentials, has been proposed in the literature. In this work we elaborate and improve this proposal. We also use this formalism to confront the electric-magnetic duality symmetry of the electromagnetic field and the Aharonov-Bohm effect, two subtle aspects of electrodynamics that we examine in a novel way. We show how the former can be derived from the simple harmonic oscillator character of vacuum electrodynamics, while also demonstrating how the magnetic version of the latter naturally arises in an explicitly non-local manner.
Address [Bernabeu, Joan] Ludwig Maximilians Univ Munchen, Phys Dept, Theresienstr 37, D-80333 Munich, Germany, Email: Joan.Bernabeu@physik.uni-muenchen.de;
Corporate Author Thesis
Publisher Mdpi Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes WOS:000495457600005 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 4192
Permanent link to this record