|   | 
Details
   web
Records
Author LHCb Collaboration (Aaij, R. et al); Martinez-Vidal, F.; Oyanguren, A.; Ruiz Valls, P.; Sanchez Mayordomo, C.
Title Measurement of CP asymmetry in B-s(0) -> D-s(-/+) K-/+ decays Type Journal Article
Year 2014 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.
Volume (up) 11 Issue 11 Pages 060 - 30pp
Keywords CP violation; CKM angle gamma; B physics; Flavor physics; Hadron-Hadron Scattering
Abstract We report on measurements of the time-dependent CP violating observables in B-s(0) -> D-s(-/+) K--/+ decays using a dataset corresponding to 1.0 fb(-1) of pp collisions recorded with the LHCb detector. We find the CP violating observables C-f = 0.53 +/- 0.25 +/- 0.04, A(f)(Delta Gamma) = 0.37 +/- 0.42 +/- 0.20, A((f) over bar)(Delta Gamma) = 0.20 +/- 0.41 +/- 0.20, S-f = -1.09 +/- 0.33 +/- 0.08, S-(f) over bar = -0.36 +/- 0.34 +/- 0.08, where the uncertainties are statistical and systematic, respectively. Using these observables together with a recent measurement of the B-s(0) mixing phase -2 beta(s) leads to the first extraction of the CKM angle gamma from B-s(0) -> D-s(-/+) K--/+ decays, finding gamma = (115(-43)(+28))degrees modulo 180 degrees at 68% CL, where the error contains both statistical and systematic uncertainties.
Address [Bediaga, I.; De Miranda, J. M.; Rodrigues, F. Ferreira; Gomes, A.; Hicheur, A.; Massafferri, A.; dos Reis, A. C.; Rodrigues, A. B.] CBPF, Rio De Janeiro, Brazil
Corporate Author Thesis
Publisher Springer Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1029-8479 ISBN Medium
Area Expedition Conference
Notes WOS:000345080300001 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 2012
Permanent link to this record
 

 
Author ATLAS TRT collaboration (Mindur, B. et al); Mitsou, V.A.; Valls Ferrer, J.A.
Title Gas gain stabilisation in the ATLAS TRT detector Type Journal Article
Year 2016 Publication Journal of Instrumentation Abbreviated Journal J. Instrum.
Volume (up) 11 Issue Pages P04027 - 19pp
Keywords Gaseous detectors; Particle tracking detectors (Gaseous detectors); Transition radiation detectors; Wire chambers (MWPC, Thin-gap chambers, drift chambers, drift tubes, proportional, chambers etc)
Abstract The ATLAS (one of two general purpose detectors at the LHC) Transition Radiation Tracker (TRT) is the outermost of the three tracking subsystems of the ATLAS Inner Detector. It is a large straw-based detector and contains about 350,000 electronics channels. The performance of the TRT as tracking and particularly particle identification detector strongly depends on stability of the operation parameters with most important parameter being the gas gain which must be kept constant across the detector volume. The gas gain in the straws can vary significantly with atmospheric pressure, temperature, and gas mixture composition changes. This paper presents a concept of the gas gain stabilisation in the TRT and describes in detail the Gas Gain Stabilisation System (GGSS) integrated into the Detector Control System (DCS). Operation stability of the GGSS during Run-1 is demonstrated.
Address [Beddall, A. J.] Bahcesehir Univ, Fac Engn & Nat Sci, TR-34353 Istanbul, Turkey, Email: bartosz.mindur@agh.edu.pl
Corporate Author Thesis
Publisher Iop Publishing Ltd Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1748-0221 ISBN Medium
Area Expedition Conference
Notes WOS:000375746400046 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 2685
Permanent link to this record
 

 
Author ATLAS Collaboration (Aad, G. et al); Alvarez Piqueras, D.; Barranco Navarro, L.; Cabrera Urban, S.; Castillo Gimenez, V.; Cerda Alberich, L.; Costa, M.J.; Fernandez Martinez, P.; Ferrer, A.; Fiorini, L.; Fuster, J.; Garcia, C.; Garcia Navarro, J.E.; Gonzalez de la Hoz, S.; Hernandez Jimenez, Y.; Higon-Rodriguez, E.; Irles Quiles, A.; Jimenez Pena, J.; King, M.; Lacasta, C.; Lacuesta, V.R.; Marti-Garcia, S.; Mitsou, V.A.; Pedraza Lopez, S.; Rodriguez Rodriguez, D.; Romero Adam, E.; Ros, E.; Salt, J.; Sanchez Martinez, V.; Soldevila, U.; Sanchez, J.; Valero, A.; Valls Ferrer, J.A.; Vos, M.
Title Beam-induced and cosmic-ray backgrounds observed in the ATLAS detector during the LHC 2012 proton-proton running period Type Journal Article
Year 2016 Publication Journal of Instrumentation Abbreviated Journal J. Instrum.
Volume (up) 11 Issue Pages P05013 - 78pp
Keywords Beam-line instrumentation (beam position and profile monitors; beam-intensity monitors; bunch length monitors); Data analysis; Performance of High Energy Physics Detectors
Abstract This paper discusses various observations on beam-induced and cosmic-ray backgrounds in the ATLAS detector during the LHC 2012 proton-proton run. Building on published results based on 2011 data, the correlations between background and residual pressure of the beam vacuum are revisited. Ghost charge evolution over 2012 and its role for backgrounds are evaluated. New methods to monitor ghost charge with beam-gas rates are presented and observations of LHC abort gap population by ghost charge are discussed in detail. Fake jets from colliding bunches and from ghost charge are analysed with improved methods, showing that ghost charge in individual radio-frequency buckets of the LHC can be resolved. Some results of two short periods of dedicated cosmic-ray background data-taking are shown; in particular cosmic-ray muon induced fake jet rates are compared to Monte Carlo simulations and to the fake jet rates from beam background. A thorough analysis of a particular LHC fill, where abnormally high background was observed, is presented. Correlations between backgrounds and beam intensity losses in special fills with very high beta* are studied.
Address [Aad, G.; Jackson, P.; Lee, L.; Petridis, A.; White, M. J.] Univ Adelaide, Dept Phys, Adelaide, SA, Australia
Corporate Author Thesis
Publisher Iop Publishing Ltd Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1748-0221 ISBN Medium
Area Expedition Conference
Notes WOS:000377851700036 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 2730
Permanent link to this record
 

 
Author ATLAS Tile Calorimeter System (Abdallah, J. et al); Ferrer, A.; Fiorini, L.; Hernandez Jimenez, Y.; Higon-Rodriguez, E.; Ruiz-Martinez, A.; Solans, C.A.; Valero, A.; Valladolid Gallego, E.; Valls Ferrer, J.A.
Title The Laser calibration of the ATLAS Tile Calorimeter during the LHC run 1 Type Journal Article
Year 2016 Publication Journal of Instrumentation Abbreviated Journal J. Instrum.
Volume (up) 11 Issue Pages T10005 - 29pp
Keywords Detector alignment and calibration methods (lasers, sources, particle-beams); Calorimeters; Performance of High Energy Physics Detectors
Abstract This article describes the Laser calibration system of the ATLAS hadronic Tile Calorimeter that has been used during the run 1 of the LHC. First, the stability of the system associated readout electronics is studied. It is found to be stable with variations smaller than 0.6 %. Then, the method developed to compute the calibration constants, to correct for the variations of the gain of the calorimeter photomultipliers, is described. These constants were determined with a statistical uncertainty of 0.3 % and a systematic uncertainty of 0.2 % for the central part of the calorimeter and 0.5 % for the end-caps. Finally, the detection and correction of timing mis-configuration of the Tile Calorimeter using the Laser system are also presented.
Address [Harkusha, S.; Kulchitsky, Y.; Kurochkin, Y. A.; Tsiareshka, P. V.] Natl Acad Sci Belarus, BI Stepanov Inst Phys, Minsk, Byelarus, Email: calvet@in2p3.fr
Corporate Author Thesis
Publisher Iop Publishing Ltd Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1748-0221 ISBN Medium
Area Expedition Conference
Notes WOS:000387876400005 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 2860
Permanent link to this record
 

 
Author Aguilar, A.C.; Binosi, D.; Papavassiliou, J.
Title The gluon mass generation mechanism: A concise primer Type Journal Article
Year 2016 Publication Frontiers of Physics Abbreviated Journal Front. Phys.
Volume (up) 11 Issue 2 Pages 111203 - 18pp
Keywords nonperturbative physics; Schwinger-Dyson equations; dynamical mass generation
Abstract We present a pedagogical overview of the nonperturbative mechanism that endows gluons with a dynamical mass. This analysis is performed based on pure Yang-Mills theories in the Landau gauge, within the theoretical framework that emerges from the combination of the pinch technique with the background field method. In particular, we concentrate on the Schwinger-Dyson equation satisfied by the gluon propagator and examine the necessary conditions for obtaining finite solutions within the infrared region. The role of seagull diagrams receives particular attention, as do the identities that enforce the cancellation of all potential quadratic divergences. We stress the necessity of introducing nonperturbative massless poles in the fully dressed vertices of the theory in order to trigger the Schwinger mechanism, and explain in detail the instrumental role of these poles in maintaining the Becchi-Rouet-Stora-Tyutin symmetry at every step of the mass-generating procedure. The dynamical equation governing the evolution of the gluon mass is derived, and its solutions are determined numerically following implementation of a set of simplifying assumptions. The obtained mass function is positive definite, and exhibits a power law running that is consistent with general arguments based on the operator product expansion in the ultraviolet region. A possible connection between confinement and the presence of an inflection point in the gluon propagator is briefly discussed.
Address [Aguilar, A. C.] Univ Campinas UNICAMP, Gleb Wataghin Inst Phys, BR-13083859 Campinas, SP, Brazil, Email: Joannis.Papavassiliou@uv.es
Corporate Author Thesis
Publisher Higher Education Press Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2095-0462 ISBN Medium
Area Expedition Conference
Notes WOS:000387550300001 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 2859
Permanent link to this record