|   | 
Details
   web
Records
Author Maso-Ferrando, A.; Sanchis-Gual, N.; Font, J.A.; Olmo, G.J.
Title Numerical evolutions of boson stars in Palatini f(R) gravity Type Journal Article
Year 2024 Publication Physical Review D Abbreviated Journal Phys. Rev. D
Volume (up) 109 Issue 4 Pages 044042 - 14pp
Keywords
Abstract We investigate the time evolution of spherically symmetric boson stars in Palatini f(R) gravity through numerical relativity computations. Employing a novel approach that establishes a correspondence between modified gravity with scalar matter and general relativity with modified scalar matter, we are able to use the techniques of numerical relativity to simulate these systems. Specifically, we focus on the quadratic theory f(R) = R + xi R2 and compare the obtained solutions with those in general relativity, exploring both positive and negative values of the coupling parameter xi. Our findings reveal that boson stars in Palatini f(R) gravity exhibit both stable and unstable evolutions. The latter give rise to three distinct scenarios: migration toward a stable configuration, complete dispersion, and gravitational collapse leading to the formation of a baby universe structure.
Address [Maso-Ferrando, Andreu; Olmo, Gonzalo J.] Ctr Mixto Univ Valencia, Univ Valencia, Dept Fis Teor, CSIC, Burjassot 46100, Valencia, Spain, Email: andreu.maso@uv.es;
Corporate Author Thesis
Publisher Amer Physical Soc Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2470-0010 ISBN Medium
Area Expedition Conference
Notes WOS:001186268100006 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 6035
Permanent link to this record
 

 
Author Bazeia, D.; Losano, L.; Olmo, G.J.
Title Novel connection between lump-like structures and quantum mechanics Type Journal Article
Year 2018 Publication European Physical Journal Plus Abbreviated Journal Eur. Phys. J. Plus
Volume (up) 133 Issue 7 Pages 251 - 10pp
Keywords
Abstract This work deals with lump-like structures in models described by a single real scalar field in two-dimensional spacetime. We start with a model that supports lump-like configurations and use the deformation procedure to construct scalar field theories that support both lumps and kinks, with the corresponding stability investigation giving rise to new physical systems. Very interestingly, we find models that support stable topological solutions, with the stability potential being able to support a tower of non-negative bound states, generating distinct families of potentials of current interest to quantum mechanics. We also describe models where the lump-like solutions give rise to stability potentials that have the shape of a double well.
Address [Bazeia, D.; Losano, L.] Univ Fed Paraiba, Dept Fis, BR-58051970 Joao Pessoa, PB, Brazil, Email: bazeia@fisica.ufpb.br
Corporate Author Thesis
Publisher Springer Heidelberg Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2190-5444 ISBN Medium
Area Expedition Conference
Notes WOS:000439341000001 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 3670
Permanent link to this record
 

 
Author Mendoza, S.; Olmo, G.J.
Title Astrophysical constraints and insights on extended relativistic gravity Type Journal Article
Year 2015 Publication Astrophysics and Space Science Abbreviated Journal Astrophys. Space Sci.
Volume (up) 357 Issue 2 Pages 133 - 6pp
Keywords Gravitation; Relativistic processes; Gravitational lensing: weak
Abstract We give precise details to support that observations of gravitational lensing at scales of individual, groups and clusters of galaxies can be understood in terms of nonNewtonian gravitational interactions with a relativistic structure compatible with the Einstein Equivalence Principle. This result is derived on very general grounds without knowing the underlying structure of the gravitational field equations. As such, any developed gravitational theory built to deal with these astrophysical scales needs to reproduce the obtained results of this article.
Address [Mendoza, S.] Univ Nacl Autonoma Mexico, Inst Astron, Mexico City 04510, DF, Mexico, Email: sergio@astro.unam.mx;
Corporate Author Thesis
Publisher Springer Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0004-640x ISBN Medium
Area Expedition Conference
Notes WOS:000354392900038 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 2234
Permanent link to this record
 

 
Author Olmo, G.J.
Title Birkhoff's theorem and perturbations in f(R) theories Type Journal Article
Year 2012 Publication Annalen der Physik Abbreviated Journal Ann. Phys.-Berlin
Volume (up) 524 Issue 5 Pages 87-88
Keywords
Abstract
Address [Olmo, Gonzalo J.] Univ Valencia, Fac Fis, Dept Fis Teor, E-46100 Valencia, Spain, Email: gonzalo.olmo@uv.es
Corporate Author Thesis
Publisher Wiley-V C H Verlag Gmbh Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0003-3804 ISBN Medium
Area Expedition Conference
Notes WOS:000303662900008 Approved no
Is ISI yes International Collaboration no
Call Number IFIC @ pastor @ Serial 1013
Permanent link to this record
 

 
Author Guendelman, E.I.; Olmo, G.J.; Rubiera-Garcia, D.; Vasihoun, M.
Title Nonsingular electrovacuum solutions with dynamically generated cosmological constant Type Journal Article
Year 2013 Publication Physics Letters B Abbreviated Journal Phys. Lett. B
Volume (up) 726 Issue 4-5 Pages 870-875
Keywords Modified gravity; Palatini formalism; Nonlinear electrodynamics; Dynamical cosmological constant; Nonsingular solutions; Wormholes
Abstract We consider static spherically symmetric configurations in a Palatini extension of General Relativity including R-2 and Ricci-squared terms, which is known to replace the central singularity by a wormhole in the electrovacuum case. We modify the matter sector of the theory by adding to the usual Maxwell term a nonlinear electromagnetic extension which is known to implement a confinement mechanism in flat space. One feature of the resulting theory is that the nonlinear electric field leads to a dynamically generated cosmological constant. We show that with this matter source the solutions of the model are asymptotically de Sitter and possess a wormhole topology. We discuss in some detail the conditions that guarantee the absence of singularities and of traversable wormholes.
Address [Guendelman, E. I.; Vasihoun, M.] Ben Gurion Univ Negev, Dept Phys, IL-84105 Beer Sheva, Israel, Email: guendel@bgumail.bgu.ac.il;
Corporate Author Thesis
Publisher Elsevier Science Bv Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0370-2693 ISBN Medium
Area Expedition Conference
Notes WOS:000327907000045 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 1680
Permanent link to this record