toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author AMON and ANTARES Collaborations (Ayala Solares, H.A. et al); Barrios-Marti, J.; Coleiro, A.; Colomer, M.; Gozzini, R.; Hernandez-Rey, J.J.; Illuminati, G.; Khan-Chowdhury, N.R.; Lotze, M.; Thakore, T.; Zornoza, J.D.; Zuñiga, J. url  doi
openurl 
  Title A Search for Cosmic Neutrino and Gamma-Ray Emitting Transients in 7.3 yr of ANTARES and Fermi LAT Data Type Journal Article
  Year 2019 Publication Astrophysical Journal Abbreviated Journal Astrophys. J.  
  Volume (down) 886 Issue 2 Pages 98 - 8pp  
  Keywords BL Lacertae objects: general; cosmic rays; gamma-ray burst: general; gamma rays: general; neutrinos  
  Abstract We analyze 7.3 yr of ANTARES high-energy neutrino and Fermi Large Area Telescope (LAT) gamma-ray data in search of cosmic neutrino + gamma-ray (nu + gamma) transient sources or source populations. Our analysis has the potential to detect either individual nu + gamma transient sources (durations delta t less than or similar to 1000 s), if they exhibit sufficient gamma-ray or neutrino multiplicity, or a statistical excess of nu + gamma transients of individually lower multiplicities. Individual high gamma-ray multiplicity events could be produced, for example, by a single ANTARES neutrino in coincidence with a LAT-detected gamma-ray burst. Treating ANTARES track and cascade event types separately, we establish detection thresholds by Monte Carlo scrambling of the neutrino data, and determine our analysis sensitivity by signal injection against these scrambled data sets. We find our analysis is sensitive to nu + gamma transient populations responsible for >5% of the observed gamma-coincident neutrinos in the track data at 90% confidence. Applying our analysis to the unscrambled data reveals no individual nu + gamma events of high significance; two ANTARES track + Fermi gamma-ray events are identified that exceed a once per decade false alarm rate threshold (p = 17%). No evidence for subthreshold nu + gamma source populations is found among the track (p = 39%) or cascade (p = 60%) events. Exploring a possible correlation of high-energy neutrino directions with Fermi gamma-ray sky brightness identified in previous work yields no added support for this correlation. While TXS.0506+056, a blazar and variable (nontransient) Fermi gamma-ray source, has recently been identified as the first source of high-energy neutrinos, the challenges in reconciling observations of the Fermi gamma-ray sky, the IceCube high-energy cosmic neutrinos, and ultrahigh-energy cosmic rays using only blazars suggest a significant contribution by other source populations. Searches for transient sources of high-energy neutrinos thus remain interesting, with the potential for either neutrino clustering or multimessenger coincidence searches to lead to discovery of the first nu + gamma transients.  
  Address [Solares, H. A. Ayala; Cowen, D. F.; DeLaunay, J. J.; Keivani, A.; Mostafa, M.; Murase, K.; Turley, C. F.] Penn State Univ, Dept Phys, 104 Davey Lab, University Pk, PA 16802 USA, Email: cft114@psu.edu  
  Corporate Author Thesis  
  Publisher Iop Publishing Ltd Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0004-637x ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000503245500001 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 4227  
Permanent link to this record
 

 
Author ANTARES Collaboration (Albert, A. et al); Barrios-Marti, J.; Coleiro, A.; Colomer, M.; Gozzini, R.; Hernandez-Rey, J.J.; Illuminati, G.; Khan-Chowdhury, N.R.; Lotze, M.; Thakore, T.; Zornoza, J.D.; Zuñiga, J. url  doi
openurl 
  Title ANTARES Neutrino Search for Time and Space Correlations with IceCube High-energy Neutrino Events Type Journal Article
  Year 2019 Publication Astrophysical Journal Abbreviated Journal Astrophys. J.  
  Volume (down) 879 Issue 2 Pages 108 - 8pp  
  Keywords astroparticle physics; neutrinos  
  Abstract In past years the IceCube Collaboration has reported the observation of astrophysical high-energy neutrino events in several analyses. Despite compelling evidence for the first identification of a neutrino source, TXS 0506+056, the origin of the majority of these events is still unknown. In this paper, we search for a possible transient origin of the IceCube astrophysical events using neutrino events detected by the ANTARES telescope. The arrival time and direction of 6894 track-like and 160 shower-like events detected over 2346 days of livetime are examined to search for coincidences with 54 IceCube high-energy track-like neutrino events, by means of a maximum likelihood method. No significant correlation is observed and upper limits on the one-flavor neutrino fluence from the direction of the IceCube candidates are derived. The nonobservation of time and space correlation within the time window of 0.1 days with the two most energetic IceCube events constrains the spectral index of a possible point-like transient neutrino source to be harder than -2.3 and -2.4 for each event, respectively.  
  Address [Albert, A.; Drouhin, D.; Gracia Ruiz, R.; Organokov, M.; Pradier, T.] Univ Strasbourg, CNRS, IPHC UMR 7178, F-67000 Strasbourg, France, Email: giulia.illuminati@ific.uv.es  
  Corporate Author Thesis  
  Publisher Iop Publishing Ltd Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0004-637x ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000475388900003 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 4096  
Permanent link to this record
 

 
Author NEXT Collaboration (Azevedo, C.D.R. et al); Gomez-Cadenas, J.J.; Alvarez, V.; Benlloch-Rodriguez, J.M.; Botas, A.; Carcel, S.; Carrion, J.V.; Diaz, J.; Felkai, R.; Ferrario, P.; Laing, A.; Liubarsky, I.; Lopez-March, N.; Martin-Albo, J.; Martinez, A.; Muñoz Vidal, J.; Musti, M.; Nebot-Guinot, M.; Novella, P.; Palmeiro, B.; Querol, M.; Renner, J.; Rodriguez, J.; Serra, L.; Simon, A.; Sorel, M.; Yahlali, N. url  doi
openurl 
  Title Microscopic simulation of xenon-based optical TPCs in the presence of molecular additives Type Journal Article
  Year 2018 Publication Nuclear Instruments & Methods in Physics Research A Abbreviated Journal Nucl. Instrum. Methods Phys. Res. A  
  Volume (down) 877 Issue Pages 157-172  
  Keywords Optical TPCs; Microscopic simulation; Xenon scintillation  
  Abstract We introduce a simulation framework for the transport of high and low energy electrons in xenon-based optical time projection chambers (OTPCs). The simulation relies on elementary cross sections (electron-atom and electron-molecule) and incorporates, in order to compute the gas scintillation, the reaction/quenching rates (atom-atom and atom-molecule) of the first 41 excited states of xenon and the relevant associated excimers, together with their radiative cascade. The results compare positively with observations made in pure xenon and its mixtures with CO2 and CF4 in a range of pressures from 0.1 to 10 bar. This work sheds some light on the elementary processes responsible for the primary and secondary xenon-scintillation mechanisms in the presence of additives, that are of interest to the OTPC technology.  
  Address [Azevedo, C. D. R.] Univ Aveiro, I3N, Phys Dept, Aveiro, Portugal, Email: Diego.Gonzalez.Diaz@usc.es  
  Corporate Author Thesis  
  Publisher Elsevier Science Bv Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0168-9002 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000415128000022 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 3371  
Permanent link to this record
 

 
Author Olmo, G.J.; Rubiera-Garcia, D.; Wojnar, A. url  doi
openurl 
  Title Stellar structure models in modified theories of gravity: Lessons and challenges Type Journal Article
  Year 2020 Publication Physics Reports Abbreviated Journal Phys. Rep.  
  Volume (down) 876 Issue Pages 1-75  
  Keywords Stellar structure; Modified gravity; Palatini formalism; Neutron stars; Brown dwarfs; Relativistic stars; Weak field; f(R) theories; Born-Infeld theory; Horndeski theory  
  Abstract The understanding of stellar structure represents the crossroads of our theories of the nuclear force and the gravitational interaction under the most extreme conditions observably accessible. It provides a powerful probe of the strong field regime of General Relativity, and opens fruitful avenues for the exploration of new gravitational physics. The latter can be captured via modified theories of gravity, which modify the Einstein-Hilbert action of General Relativity and/or some of its principles. These theories typically change the Tolman-Oppenheimer-Volkoff equations of stellar's hydrostatic equilibrium, thus having a large impact on the astrophysical properties of the corresponding stars and opening a new window to constrain these theories with present and future observations of different types of stars. For relativistic stars, such as neutron stars, the uncertainty on the equation of state of matter at supranuclear densities intertwines with the new parameters coming from the modified gravity side, providing a whole new phenomenology for the typical predictions of stellar structure models, such as mass-radius relations, maximum masses, or moment of inertia. For non-relativistic stars, such as white, brown and red dwarfs, the weakening/strengthening of the gravitational force inside astrophysical bodies via the modified Newtonian (Poisson) equation may induce changes on the star's mass, radius, central density or luminosity, having an impact, for instance, in the Chandrasekhar's limit for white dwarfs, or in the minimum mass for stable hydrogen burning in high-mass brown dwarfs. This work aims to provide a broad overview of the main such results achieved in the recent literature for many such modified theories of gravity, by combining the results and constraints obtained from the analysis of relativistic and non-relativistic stars in different scenarios. Moreover, we will build a bridge between the efforts of the community working on different theories, formulations, types of stars, theoretical modelings, and observational aspects, highlighting some of the most promising opportunities in the field.  
  Address [Olmo, Gonzalo J.] Univ Valencia, Dept Fis Teor, Ctr Mixto, CSIC, Valencia 46100, Spain, Email: gonzalo.olmo@uv.es;  
  Corporate Author Thesis  
  Publisher Elsevier Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0370-1573 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000570298900001 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 4531  
Permanent link to this record
 

 
Author ANTARES, IceCube, LIGO and Virgo Collaborations (Albert, A. et al); Barrios-Marti, J.; Coleiro, A.; Colomer, M.; Hernandez-Rey, J.J.; Illuminati, G.; Khan-Chowdhury, N.R.; Lotze, M.; Zornoza, J.D.; Zuñiga, J. url  doi
openurl 
  Title Search for Multimessenger Sources of Gravitational Waves and High-energy Neutrinos with Advanced LIGO during Its First Observing Run, ANTARES, and IceCube Type Journal Article
  Year 2019 Publication Astrophysical Journal Abbreviated Journal Astrophys. J.  
  Volume (down) 870 Issue 2 Pages 134 - 16pp  
  Keywords gravitational waves; neutrinos  
  Abstract Astrophysical sources of gravitational waves, such as binary neutron star and black hole mergers or core-collapse supernovae, can drive relativistic outflows, giving rise to non-thermal high-energy emission. High-energy neutrinos are signatures of such outflows. The detection of gravitational waves and high-energy neutrinos from common sources could help establish the connection between the dynamics of the progenitor and the properties of the outflow. We searched for associated emission of gravitational waves and high-energy neutrinos from astrophysical transients with minimal assumptions using data from Advanced LIGO from its first observing run O1, and data from the ANTARES and IceCube neutrino observatories from the same time period. We focused on candidate events whose astrophysical origins could not be determined from a single messenger. We found no significant coincident candidate, which we used to constrain the rate density of astrophysical sources dependent on their gravitational-wave and neutrino emission processes.  
  Address [Albert, A.; Drouhin, D.; Ruiz, R. Gracia; Organokov, M.; Pradier, T.; Maris, I. C.] Univ Strasbourg, CNRS, IPHC UMR 7178, F-67000 Strasbourg, France  
  Corporate Author Thesis  
  Publisher Iop Publishing Ltd Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0004-637x ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000456063900015 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 3883  
Permanent link to this record
 

 
Author ANTARES and IceCube Collaborations (Albert, A. et al); Barrios-Marti, J.; Coleiro, A.; Colomer, M.; Hernandez-Rey, J.J.; Illuminati, G.; Khan-Chowdhury, N.R.; Lotze, M.; Zornoza, J.D.; Zuñiga, J. url  doi
openurl 
  Title Joint Constraints on Galactic Diffuse Neutrino Emission from the ANTARES and IceCube Neutrino Telescopes Type Journal Article
  Year 2018 Publication Astrophysical Journal Letters Abbreviated Journal Astrophys. J. Lett.  
  Volume (down) 868 Issue 2 Pages L20 - 7pp  
  Keywords cosmic rays; diffusion; Galaxy: disk; gamma rays: diffuse background; neutrinos  
  Abstract The existence of diffuse Galactic neutrino production is expected from cosmic-ray interactions with Galactic gas and radiation fields. Thus, neutrinos are a unique messenger offering the opportunity to test the products of Galactic cosmic-ray interactions up to energies of hundreds of TeV. Here we present a search for this production using ten years of Astronomy with a Neutrino Telescope and Abyss environmental RESearch (ANTARES) track and shower data, as well as seven years of IceCube track data. The data are combined into a joint likelihood test for neutrino emission according to the KRA(gamma) model assuming a 5 PeV per nucleon Galactic cosmic-ray cutoff. No significant excess is found. As a consequence, the limits presented in this Letter start constraining the model parameter space for Galactic cosmic-ray production and transport.  
  Address [Albert, A.; Drouhin, D.; Ruiz, R. Gracia; Organokov, M.; Pradier, T.] Univ Strasbourg, CNRS, IPHC UMR 7178, F-67000 Strasbourg, France, Email: antares.spokeperson@in2p3.fr;  
  Corporate Author Thesis  
  Publisher Iop Publishing Ltd Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2041-8205 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000450844500004 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 3807  
Permanent link to this record
 

 
Author Keivani, A.; Murase, K.; Petropoulou, M.; Fox, D.B.; Cenko, S.B.; Chaty, S.; Coleiro, A.; DeLaunay, J.J.; Dimitrakoudis, S.; Evans, P.A.; Kennea, J.A.; Marshall, F.E.; Mastichiadis, A.; Osborne, J.P.; Santander, M.; Tohuvavohu, A.; Turley, C.F. url  doi
openurl 
  Title A Multimessenger Picture of the Flaring Blazar TXS 0506+056: Implications for High-energy Neutrino Emission and Cosmic-Ray Acceleration Type Journal Article
  Year 2018 Publication Astrophysical Journal Abbreviated Journal Astrophys. J.  
  Volume (down) 864 Issue 1 Pages 84 - 16pp  
  Keywords Lacertae objects: general; BL Lacertae objects: individual (TXS 0506+056); galaxies: active; gamma rays: galaxies; neutrinos; radiation mechanisms: non-thermal  
  Abstract Detection of the IceCube-170922A neutrino coincident with the flaring blazar TXS 0506+056, the first and only similar to 3 sigma high-energy neutrino source association to date, offers a potential breakthrough in our understanding of high-energy cosmic particles and blazar physics. We present a comprehensive analysis of TXS. 0506+056 during its flaring state, using newly collected Swift, NuSTAR, and X-shooter data with Fermi observations and numerical models to constrain the blazar's particle acceleration processes and multimessenger (electromagnetic (EM) and high-energy neutrino) emissions. Accounting properly for EM cascades in the emission region, we find a physically consistent picture only within a hybrid leptonic scenario, with gamma-rays produced by external inverse-Compton processes and high-energy neutrinos via a radiatively subdominant hadronic component. We derive robust constraints on the blazar's neutrino and cosmic-ray emissions and demonstrate that, because of cascade effects, the 0.1-100 keV emissions of TXS. 0506+056 serve as a better probe of its hadronic acceleration and highenergy neutrino production processes than its GeV-TeV emissions. If the IceCube neutrino association holds, physical conditions in the TXS. 0506+056 jet must be close to optimal for high-energy neutrino production, and are not favorable for ultrahigh-energy cosmic-ray acceleration. Alternatively, the challenges we identify in generating a significant rate of IceCube neutrino detections from TXS. 0506+056 may disfavor single-zone models, in which.-rays and high-energy neutrinos are produced in a single emission region. In concert with continued operations of the high-energy neutrino observatories, we advocate regular X-ray monitoring of TXS. 0506+056 and other blazars in order to test single-zone blazar emission models, clarify the nature and extent of their hadronic acceleration processes, and carry out the most sensitive possible search for additional multimessenger sources.  
  Address [Keivani, A.; Murase, K.; DeLaunay, J. J.; Turley, C. F.] Penn State Univ, Dept Phys, 104 Davey Lab, University Pk, PA 16802 USA, Email: keivani@psu.edu;  
  Corporate Author Thesis  
  Publisher Iop Publishing Ltd Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0004-637x ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000443293800010 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 3708  
Permanent link to this record
 

 
Author Cermeño, M.; Perez-Garcia, M.A.; Lineros, R.A. url  doi
openurl 
  Title Enhanced neutrino emissivities in pseudoscalar-mediated dark matter annihilation in neutron stars Type Journal Article
  Year 2018 Publication Astrophysical Journal Abbreviated Journal Astrophys. J.  
  Volume (down) 863 Issue 2 Pages 157 - 9pp  
  Keywords dark matter; neutrinos; stars: neutron  
  Abstract We calculate neutrino emissivities from self-annihilating dark matter (DM) (chi) in the dense and hot stellar interior of a (proto)neutron star. Using a model where DM interacts with nucleons in the stellar core through a pseudoscalar boson (a) we find that the neutrino production rates from the dominant reaction channels chi -> nu(nu) over bar or chi chi -> aa, with subsequent decay of the mediator a -> nu(nu) over bar, could locally match and even surpass those of the standard neutrinos from the modified nuclear URCA processes at early ages. We find that the emitting region can be localized in a tiny fraction of the star (less than a few percent of the core volume) and the process can last its entire lifetime for some cases under study. We discuss the possible consequences of our results for stellar cooling in light of existing DM constraints.  
  Address [Cermeno, M.; Perez-Garcia, M. A.] Univ Salamanca, Dept Fundamental Phys, Plaza Merced S-N, E-37008 Salamanca, Spain, Email: marinacgavilan@usal.es;  
  Corporate Author Thesis  
  Publisher Iop Publishing Ltd Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0004-637x ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000442222700019 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 3696  
Permanent link to this record
 

 
Author ANTARES Collaboration (Albert, A. et al); Barrios-Marti, J.; Coleiro, A.; Colomer, M.; Hernandez-Rey, J.J.; Illuminati, G.; Khan-Chowdhury, N.R.; Lotze, M.; Zornoza, J.D.; Zuñiga, J. url  doi
openurl 
  Title The search for neutrinos from TXS 0506+056 with the ANTARES telescope Type Journal Article
  Year 2018 Publication Astrophysical Journal Letters Abbreviated Journal Astrophys. J. Lett.  
  Volume (down) 863 Issue 2 Pages L30 - 6pp  
  Keywords astroparticle physics; elementary particles; galaxies: active  
  Abstract The results of three different searches for neutrino candidates, associated with the IceCube-170922A event or from the direction of TXS 0506+056, by the ANTARES neutrino telescope, are presented. The first search refers to the online follow-up of the IceCube alert; the second is based on the standard time-integrated method employed by the Collaboration to search for point-like neutrino sources; the third uses information from the IceCube time-dependent analysis that reported bursting activity centered on 2014 December 13, as input for an ANTARES time-dependent analysis. The online follow-up and the time-dependent analysis yield no events related to the source. The time-integrated study performed over a period from 2007 to 2017 fits 1.03 signal events, which corresponds to a p-value of 3.4% (not considering trial factors). Only for two other astrophysical objects in our candidate list has a smaller p-value been found. When considering that 107 sources have been investigated, the post-trial p-value for TXS 0506+056 corresponds to 87%.  
  Address [Albert, A.; Drouhin, D.; Ruiz, T. Gregoire; Organokov, M.; Pradier, T.] Univ Strasbourg, CNRS, IPHC UMR 7178, F-67000 Strasbourg, France, Email: antares.spokesperson@in2p3.fr  
  Corporate Author Thesis  
  Publisher Iop Publishing Ltd Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2041-8205 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000442002100004 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 3697  
Permanent link to this record
 

 
Author ANTARES Collaboration (Albert, A. et al); Barrios-Marti, J.; Coleiro, A.; Hernandez-Rey, J.J.; Illuminati, G.; Lotze, M.; Tönnis, C.; Zornoza, J.D.; Zuñiga, J. url  doi
openurl 
  Title All-flavor Search for a Diffuse Flux of Cosmic Neutrinos with Nine Years of ANTARES Data Type Journal Article
  Year 2018 Publication Astrophysical Journal Letters Abbreviated Journal Astrophys. J. Lett.  
  Volume (down) 853 Issue 1 Pages L7 - 5pp  
  Keywords astroparticle physics; neutrinos  
  Abstract The ANTARES detector is at present the most sensitive neutrino telescope in the northern hemisphere. The highly significant cosmic neutrino excess observed by the Antarctic IceCube detector can be studied with ANTARES, exploiting its complementing field of view, exposure, and lower energy threshold. Searches for an all-flavor diffuse neutrino signal, covering nine years of ANTARES data taking, are presented in this Letter. Upward-going events are used to reduce the atmospheric muon background. This work includes for the first time in ANTARES both track-like (mainly nu mu) and shower-like (mainly nu(e)) events in this kind of analysis. Track-like events allow for an increase of the effective volume of the detector thanks to the long path traveled by muons in rock and/ or sea water. Shower-like events are well reconstructed only when the neutrino interaction vertex is close to, or inside, the instrumented volume. A mild excess of high-energy events over the expected background is observed in nine years of ANTARES data in both samples. The best fit for a single power-law cosmic neutrino spectrum, in terms of perflavor flux at 100 TeV, is Phi(1f)(0) (100 TeV) = (1.7 +/- 1.0) x 10(-18) GeV-1 cm(-2) s(-1) sr(-1) with spectral index Gamma = 2.4(-0.4)(+0.5) .The null cosmic flux assumption is rejected with a significance of 1.6 sigma .  
  Address [Albert, A.; Drouhin, D.; Racca, C.] Inst Univ Technol Colmar, Univ Haute Alsace, GRPHE, 34 Rue Grillenbreit BP, F-505686800 Colmar, France, Email: lfusco@bo.infn.it;  
  Corporate Author Thesis  
  Publisher Iop Publishing Ltd Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2041-8205 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000423182700004 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 3456  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records:
ific federMinisterio de Ciencia e InnovaciĆ³nAgencia Estatal de Investigaciongva