|
Unbehaun, T. et al(C. T. A. C. and K. M. 3N. T. C.), Alves Garre, S., Calvo, D., Carretero, V., Cecchini, V., Garcia Soto, A., et al. (2024). Prospects for combined analyses of hadronic emission from γ-ray sources in the Milky Way with CTA and KM3NeT. Eur. Phys. J. C, 84(2), 112–19pp.
Abstract: The Cherenkov Telescope Array and the KM3NeT neutrino telescopes are major upcoming facilities in the fields of gamma-ray and neutrino astronomy, respectively. Possible simultaneous production of gamma rays and neutrinos in astrophysical accelerators of cosmic-ray nuclei motivates a combination of their data. We assess the potential of a combined analysis of CTA and KM3NeT data to determine the contribution of hadronic emission processes in known Galactic gamma-ray emitters, comparing this result to the cases of two separate analyses. In doing so, we demonstrate the capability of GAMMAPY, an open-source software package for the analysis of gamma-ray data, to also process data from neutrino telescopes. For a selection of prototypical gamma-ray sources within our Galaxy, we obtain models for primary proton and electron spectra in the hadronic and leptonic emission scenario, respectively, by fitting published gamma-ray spectra. Using these models and instrument response functions for both detectors, we employ the GAMMAPY package to generate pseudo data sets, where we assume 200 h of CTA observations and 10 years of KM3NeT detector operation. We then apply a three-dimensional binned likelihood analysis to these data sets, separately for each instrument and jointly for both. We find that the largest benefit of the combined analysis lies in the possibility of a consistent modelling of the gamma-ray and neutrino emission. Assuming a purely leptonic scenario as input, we obtain, for the most favourable source, an average expected 68% credible interval that constrains the contribution of hadronic processes to the observed gamma-ray emission to below 15%.
|
|
|
KM3NeT Collaboration(Aiello, S. et al), Alves Garre, S., Calvo, D., Carretero, V., Garcia Soto, A., Gozzini, S. R., et al. (2023). First observation of the cosmic ray shadow of the Moon and the Sun with KM3NeT/ORCA. Eur. Phys. J. C, 83(4), 344–9pp.
Abstract: This article reports the first observation of the Moon and the Sun shadows in the sky distribution of cosmicray induced muons measured by the KM3NeT/ORCA detector. The analysed data-taking period spans from February 2020 to November 2021, when the detector had 6 Detection Units deployed at the bottom of the Mediterranean Sea, each composed of 18 Digital Optical Modules. The shadows induced by theMoon and the Sun were detected at their nominal position with a statistical significance of 4.2 sigma and 6.2 sigma, and an angular resolution of sigma(res) = 0.49 degrees and sigma(res) = 0.66 degrees, respectively, consistent with the prediction of 0.53 degrees from simulations. This early result confirms the effectiveness of the detector calibration, in time, position and orientation and the accuracy of the event direction reconstruction. This also demonstrates the performance and the competitiveness of the detector in terms of pointing accuracy and angular resolution.
|
|
|
KM3NeT Collaboration(Aiello, S. et al), Alves Garre, S., Calvo, D., Carretero, V., Colomer, M., Garcia Soto, A., et al. (2022). Implementation and first results of the KM3NeT real-time core-collapse supernova neutrino search. Eur. Phys. J. C, 82(4), 317–16pp.
Abstract: The KM3NeT research infrastructure is unconstruction in the Mediterranean Sea. KM3NeT will study atmospheric and astrophysical neutrinos with two multi-purpose neutrino detectors, ARCA and ORCA, primarily aimed at GeV-PeV neutrinos. Thanks to the multi-photomultiplier tube design of the digital optical modules, KM3NeT is capable of detecting the neutrino burst from a Galactic or near-Galactic core-collapse supernova. This potential is already exploitable with the first detection units deployed in the sea. This paper describes the real-time implementation of the supernova neutrino search, operating on the two KM3NeT detectors since the first months of 2019. A quasi-online astronomy analysis is introduced to study the time profile of the detected neutrinos for especially significant events. The mechanism of generation and distribution of alerts, as well as the integration into the SNEWS and SNEWS 2.0 global alert systems, are described. The approach for the follow-up of external alerts with a search for a neutrino excess in the archival data is defined. Finally, an overview of the current detector capabilities and a report after the first two years of operation are given.
|
|
|
KM3NeT Collaboration(Ageron, M. et al), Calvo, D., Coleiro, A., Colomer, M., Gozzini, S. R., Hernandez-Rey, J. J., et al. (2020). Dependence of atmospheric muon flux on seawater depth measured with the first KM3NeT detection units. Eur. Phys. J. C, 80(2), 99–11pp.
Abstract: KM3NeT is a research infrastructure located in the Mediterranean Sea, that will consist of two deep-sea Cherenkov neutrino detectors. With one detector (ARCA), the KM3NeT Collaboration aims at identifying and studying TeV-PeV astrophysical neutrino sources. With the other detector (ORCA), the neutrino mass ordering will be determined by studying GeV-scale atmospheric neutrino oscillations. The first KM3NeT detection units were deployed at the Italian and French sites between 2015 and 2017. In this paper, a description of the detector is presented, together with a summary of the procedures used to calibrate the detector in-situ. Finally, the measurement of the atmospheric muon flux between 2232-3386 m seawater depth is obtained.
|
|
|
Akindinov, V. et al, Colomer, M., Gozzini, S. R., Hernandez-Rey, J. J., Khan Chowdhury, N. R., Thakore, T., et al. (2019). Letter of interest for a neutrino beam from Protvino to KM3NeT/ORCA. Eur. Phys. J. C, 79(9), 758–14pp.
Abstract: The Protvino accelerator facility located in the Moscow region, Russia, is in a good position to offer a rich experimental research program in the field of neutrino physics. Of particular interest is the possibility to direct a neutrino beam from Protvino towards the KM3NeT/ORCA detector, which is currently under construction in the Mediterranean Sea 40 km offshore Toulon, France. This proposal is known as P2O. Thanks to its baseline of 2595 km, this experiment would yield an unparalleled sensitivity to matter effects in the Earth, allowing for the determination of the neutrino mass ordering with a high level of certainty after only a few years of running at a modest beam intensity of sensitivity to the leptonic CP-violating Dirac phase can be achieved. A second stage of the experiment, comprising a further intensity upgrade of the accelerator complex and a densified version of the ORCA detector (Super-ORCA), would allow for up to a 6 sigma\documentclass[12pt] resolution on the CP phase after 10 years of running with a 450 kW beam, competitive with other planned experiments. The initial composition and energy spectrum of the neutrino beam would need to be monitored by a near detector, to be constructed several hundred meters downstream from the proton beam target. The same neutrino beam and near detector set-up would also allow for neutrino-nucleus cross section measurements to be performed. A short-baseline sterile neutrino search experiment would also be possible.
|
|
|
Real, D., Calvo, D., Manzaneda, M., Diaz, A., Gozzini, S. R., Zornoza, J. D., et al. (2025). Novel Hybrid Low-Resource Field-Programmable-Gate-Array Time-to-Digital-Converter Architecture. IEEE Trans. Instrum. Meas., 74, 2000812–12pp.
Abstract: Time measurements are challenging in electronics given their various applications. The main focus lies not in achieving greater precision, as conventional architectures have already reached picosecond levels. Instead, the challenge stems from the use of low resources and the substantial expansion in the number of channels. This study presents a novel architecture for the implementation of time-to-digital converters (TDCs) in applications where resources are constrained. The introduced field-programmable-gate-array (FPGA)-based TDC offers a resolution of 415.84 ps, a single-shot precision of 0.45 least significant bits (LSBs) (186 ps r.m.s.) while maintaining a minimal resource occupancy. Built upon a multishift phase counter, the TDC is extended with a tap delay using the input delay available in the FPGA hardware input, doubling the resolution of the TDC. The resource utilization is minimized when compared to low-resource state-of-the-art TDCs. The number of look-up tables (LUTs) has been reduced to 102, and the number of registers to 213. Furthermore, the presented TDC exhibits favorable differential nonlinearity (DNL) (0.2 LSBs) and integral nonlinearity (0.15 LSBs). The TDC has been successfully implemented on an Artix7-2 from Xilinx. This design provides a resource-effective solution for applications requiring high precision and low resource consumption.
|
|
|
KM3NeT Collaboration(Aiello, S. et al), Alves Garre, S., Calvo, D., Carretero, V., Garcia Soto, A., Gozzini, S. R., et al. (2023). KM3NeT broadcast optical data transport system. J. Instrum., 18(2), T02001–22pp.
Abstract: The optical data transport system of the KM3NeT neutrino telescope at the bottom of the Mediterranean Sea will provide more than 6000 optical modules in the detector arrays with a point-to-point optical connection to the control stations onshore. The ARCA and ORCA detectors of KM3NeT are being installed at a depth of about 3500 m and 2500 m, respectively and their distance to the control stations is about 100 kilometers and 40 kilometers. In particular, the two detectors are optimised for the detection of cosmic neutrinos with energies above about 1 TeV (ARCA) and for the detection of atmospheric neutrinos with energies in the range 1 GeV-1 TeV (ORCA). The expected maximum data rate is 200 Mbps per optical module. The implemented optical data transport system matches the layouts of the networks of electro-optical cables and junction boxes in the deep sea. For efficient use of the fibres in the system the technology of Dense Wavelength Division Multiplexing is applied. The performance of the optical system in terms of measured bit error rates, optical budget are presented. The next steps in the implementation of the system are also discussed.
|
|
|
KM3NeT Collaboration(Aiello, S. et al), Alves Garre, S., Calvo, D., Carretero, V., Colomer, M., Garcia Soto, A., et al. (2022). The KM3NeT multi-PMT optical module. J. Instrum., 17(7), P07038–28pp.
Abstract: The optical module of the KM3NeT neutrino telescope is an innovative multi-faceted large area photodetection module. It contains 31 three-inch photomultiplier tubes in a single 0.44 m diameter pressure-resistant glass sphere. The module is a sensory device also comprising calibration instruments and electronics for power, readout and data acquisition. It is capped with a breakout-box with electronics for connection to an electro-optical cable for power and long-distance communication to the onshore control station. The design of the module was qualified for the first time in the deep sea in 2013. Since then, the technology has been further improved to meet requirements of scalability, cost-effectiveness and high reliability. The module features a sub-nanosecond timing accuracy and a dynamic range allowing the measurement of a single photon up to a cascade of thousands of photons, suited for the measurement of the Cherenkov radiation induced in water by secondary particles from interactions of neutrinos with energies in the range of GeV to PeV. A distributed production model has been implemented for the delivery of more than 6000 modules in the coming few years with an average production rate of more than 100 modules per month. In this paper a review is presented of the design of the multi-PMT KM3NeT optical module with a proven effective background suppression and signal recognition and sensitivity to the incoming direction of photons.
|
|
|
KM3NeT Collaboration(Aiello, S. et al), Alves Garre, S., Calvo, D., Carretero, V., Colomer, M., Corredoira, I., et al. (2020). Event reconstruction for KM3NeT/ORCA using convolutional neural networks. J. Instrum., 15(10), P10005–39pp.
Abstract: The KM3NeT research infrastructure is currently under construction at two locations in the Mediterranean Sea. The KM3NeT/ORCA water-Cherenkov neutrino detector off the French coast will instrument several megatons of seawater with photosensors. Its main objective is the determination of the neutrino mass ordering. This work aims at demonstrating the general applicability of deep convolutional neural networks to neutrino telescopes, using simulated datasets for the KM3NeT/ORCA detector as an example. To this end, the networks are employed to achieve reconstruction and classification tasks that constitute an alternative to the analysis pipeline presented for KM3NeT/ORCA in the KM3NeT Letter of Intent. They are used to infer event reconstruction estimates for the energy, the direction, and the interaction point of incident neutrinos. The spatial distribution of Cherenkov light generated by charged particles induced in neutrino interactions is classified as shower- or track-like, and the main background processes associated with the detection of atmospheric neutrinos are recognized. Performance comparisons to machine-learning classification and maximum-likelihood reconstruction algorithms previously developed for KM3NeT/ORCA are provided. It is shown that this application of deep convolutional neural networks to simulated datasets for a large-volume neutrino telescope yields competitive reconstruction results and performance improvements with respect to classical approaches.
|
|
|
KM3NeT Collaboration(Aiello, S. et al), Alves Garre, S., Calvo, D., Carretero, V., Colomer, M., Corredoira, I., et al. (2020). Deep-sea deployment of the KM3NeT neutrino telescope detection units by self-unrolling. J. Instrum., 15(11), P11027–18pp.
Abstract: KM3NeT is a research infrastructure being installed in the deep Mediterranean Sea. It will house a neutrino telescope comprising hundreds of networked moorings – detection units or strings – equipped with optical instrumentation to detect the Cherenkov radiation generated by charged particles from neutrino-induced collisions in its vicinity. In comparison to moorings typically used for oceanography, several key features of the KM3NeT string are different: the instrumentation is contained in transparent and thus unprotected glass spheres; two thin Dyneema (R) ropes are used as strength members; and a thin delicate backbone tube with fibre-optics and copper wires for data and power transmission, respectively, runs along the full length of the mooring. Also, compared to other neutrino telescopes such as ANTARES in the Mediterranean Sea and GVD in Lake Baikal, the KM3NeT strings are more slender to minimise the amount of material used for support of the optical sensors. Moreover, the rate of deploying a large number of strings in a period of a few years is unprecedented. For all these reasons, for the installation of the KM3NeT strings, a custom-made, fast deployment method was designed. Despite the length of several hundreds of metres, the slim design of the string allows it to be compacted into a small, re-usable spherical launching vehicle instead of deploying the mooring weight down from a surface vessel. After being lowered to the seafloor, the string unfurls to its full length with the buoyant launching vehicle rolling along the two ropes. The design of the vehicle, the loading with a string, and its underwater self-unrolling are detailed in this paper.
|
|