toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Stoppa, F.; Vreeswijk, P.; Bloemen, S.; Bhattacharyya, S.; Caron, S.; Johannesson, G.; Ruiz de Austri, R.; van den Oetelaar, C.; Zaharijas, G.; Groot, P.J.; Cator, E.; Nelemans, G. url  doi
openurl 
  Title AutoSourceID-Light Fast optical source localization via U-Net and Laplacian of Gaussian Type Journal Article
  Year 2022 Publication Astronomy & Astrophysics Abbreviated Journal Astron. Astrophys.  
  Volume (down) 662 Issue Pages A109 - 8pp  
  Keywords astronomical databases; miscellaneous; methods; data analysis; stars; imaging; techniques; image processing  
  Abstract Aims. With the ever-increasing survey speed of optical wide-field telescopes and the importance of discovering transients when they are still young, rapid and reliable source localization is paramount. We present AutoSourceID-Light (ASID-L), an innovative framework that uses computer vision techniques that can naturally deal with large amounts of data and rapidly localize sources in optical images. Methods. We show that the ASID-L algorithm based on U-shaped networks and enhanced with a Laplacian of Gaussian filter provides outstanding performance in the localization of sources. A U-Net network discerns the sources in the images from many different artifacts and passes the result to a Laplacian of Gaussian filter that then estimates the exact location. Results. Using ASID-L on the optical images of the MeerLICHT telescope demonstrates the great speed and localization power of the method. We compare the results with SExtractor and show that our method outperforms this more widely used method. ASID-L rapidly detects more sources not only in low- and mid-density fields, but particularly in areas with more than 150 sources per square arcminute. The training set and code used in this paper are publicly available.  
  Address [Stoppa, F.; Vreeswijk, P.; Bloemen, S.; Groot, P. J.; Nelemans, G.] Radboud Univ Nijmegen, Dept Astrophys, IMAPP, POB 9010, NL-6500 GL Nijmegen, Netherlands, Email: f.stoppa@astro.ru.nl  
  Corporate Author Thesis  
  Publisher Edp Sciences S A Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0004-6361 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000818665600009 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 5291  
Permanent link to this record
 

 
Author Carles, M.; Lerche, C.W.; Sanchez, F.; Mora, F.; Benlloch, J.M. doi  openurl
  Title Position correction with depth of interaction information for a small animal PET system Type Journal Article
  Year 2011 Publication Nuclear Instruments & Methods in Physics Research A Abbreviated Journal Nucl. Instrum. Methods Phys. Res. A  
  Volume (down) 648 Issue Pages S176-S180  
  Keywords DOI; PET; Positioning algorithm; Gamma ray imaging; Continuous scintillators  
  Abstract In this work we study the effects on the spatial resolution when depth of interaction (001) information is included in the parameterization of the line of response (LOR) for a small animal positron emission tomography (PET) system. One of the most important degrading factors for PET is the parallax error introduced in systems that do not provide DOI information of the recorded gamma-rays. Our group has designed a simple and inexpensive method for DOI determination in continuous scintillation crystals. This method is based, on one hand, in the correlation between the scintillation light distribution width in monolithic crystals and the DOI, and, on the other hand, on a small modification of the widely applied charge dividing circuits (CDR). In this work we present a new system calibration that includes the DOI information, and also the development of the correction equations that relates the LOR without and with DOI information. We report the results obtained for different measurements along the transaxial field of view (FOV) and the image quality enhancement achieved specially at the edge of the FOV.  
  Address [Carles, M.; Sanchez, F.; Benlloch, J. M.] Inst Fis Corpuscular CSIC UV, Valencia 46071, Spain, Email: montcar@ific.uv.es  
  Corporate Author Thesis  
  Publisher Elsevier Science Bv Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0168-9002 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000305376900046 Approved no  
  Is ISI yes International Collaboration no  
  Call Number IFIC @ pastor @ Serial 1067  
Permanent link to this record
 

 
Author Llosa, G.; Barrio, J.; Lacasta, C.; Callier, S.; Raux, L.; de La Taille, C. doi  openurl
  Title First tests in the application of silicon photomultiplier arrays to dose monitoring in hadron therapy Type Journal Article
  Year 2011 Publication Nuclear Instruments & Methods in Physics Research A Abbreviated Journal Nucl. Instrum. Methods Phys. Res. A  
  Volume (down) 648 Issue Pages S96-S99  
  Keywords Hadron therapy; Compton imaging; LaBr3; Continuous crystal; SiPM; MPPC; G-APD  
  Abstract A detector head composed of a continuous LaBr3 crystal coupled to a silicon photomultiplier array has been mounted and tested, for its use in a Compton telescope for dose monitoring in hadron therapy. The LaBr3 crystal has 16 mm x 18 mm x 5 mm size, and it is surrounded with reflecting material in five faces. The SiPM array has 16 (4 x 4) elements of 3 mm x 3 mm size. The SPIROC1 ASIC has been employed as readout electronics. The detector shows a linear behavior up to 1275 keV. The energy resolution obtained at 511 keV is 7% FWHM, and it varies as one over the square root of the energy up to the energies tested. The variations among the detector channels are within 12%. A preliminary measurement of the timing resolution gives 7 ns FWHM. The spatial resolution obtained with the center of gravity method is 1.2 mm FWHM. The tests performed confirm the correct functioning of the detector.  
  Address [Llosa, G.; Barrio, J.; Lacasta, C.] Inst Fis Corpuscular IFIC CSIC UVEG, Valencia, Spain, Email: gabriela.llosa@ific.uv.es  
  Corporate Author Thesis  
  Publisher Elsevier Science Bv Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0168-9002 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000305376900026 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 1068  
Permanent link to this record
 

 
Author AGATA Collaboration; Doncel, M.; Quintana, B.; Gadea, A.; Recchia, F.; Farnea, E. doi  openurl
  Title Background rejection capabilities of a Compton imaging telescope setup with a DSSD Ge planar detector and AGATA Type Journal Article
  Year 2011 Publication Nuclear Instruments & Methods in Physics Research A Abbreviated Journal Nucl. Instrum. Methods Phys. Res. A  
  Volume (down) 648 Issue Pages S131-S134  
  Keywords gamma-Spectroscopy; Gamma tracking; Imaging; Position-sensitive germanium detectors  
  Abstract In this work, we show the first Monte Carlo results about the performance of the Ge array which we propose for the DESPEC experiment at FAIR, when the background algorithm developed for AGATA is applied. The main objective of our study is to characterize the capabilities of the gamma-spectroscopy system, made up of AGATA detectors in a semi-spherical distribution covering a 1 pi solid angle and a set of planar Ge detectors in a daisy configuration, to discriminate between gamma sources placed at different locations.  
  Address [Doncel, M.; Quintana, B.] Univ Salamanca, Lab Radiac Ionizantes, E-37008 Salamanca, Spain, Email: doncel@usal.es  
  Corporate Author Thesis  
  Publisher Elsevier Science Bv Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0168-9002 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000305376900035 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 1071  
Permanent link to this record
 

 
Author AGATA Collaboration; Doncel, M.; Recchia, F.; Quintana, B.; Gadea, A.; Farnea, E. doi  openurl
  Title Experimental test of the background rejection, through imaging capability, of a highly segmented AGATA germanium detector Type Journal Article
  Year 2010 Publication Nuclear Instruments & Methods in Physics Research A Abbreviated Journal Nucl. Instrum. Methods Phys. Res. A  
  Volume (down) 622 Issue 3 Pages 614-618  
  Keywords Gamma spectroscopy; Gamma tracking; Imaging; Position-sensitive germanium detectors  
  Abstract The development of highly segmented germanium detectors as well as the algorithms to identify the position of the interaction within the crystal opens the possibility to locate the gamma-ray source using Compton imaging algorithms. While the Compton-suppression shield, coupled to the germanium detector in conventional arrays, works also as an active filter against the gamma rays originated outside the target, the new generation of position sensitive gamma-ray detector arrays has to fully rely on tracking capabilities for this purpose. In specific experimental conditions, as the ones foreseen at radioactive beam facilities, the ability to discriminate background radiation improves the sensitivity of the gamma spectrometer. In this work we present the results of a measurement performed at the Laboratori Nazionali di Legnaro (LNL) aiming the evaluation of the AGATA detector capabilities to discriminate the origin of the gamma rays on an event-by-event basis. It will be shown that, exploiting the Compton scattering formula, it is possible to track back gamma rays coming from different positions, assigning them to specific emitting locations. These imaging capabilities are quantified for a single crystal AGATA detector.  
  Address [Doncel, M.; Quintana, B.] Univ Salamanca, Lab Radiac Ionizantes, E-37008 Salamanca, Spain, Email: doncel@usal.es  
  Corporate Author Thesis  
  Publisher Elsevier Science Bv Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0168-9002 ISBN Medium  
  Area Expedition Conference  
  Notes ISI:000282562700017 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 257  
Permanent link to this record
 

 
Author Borja-Lloret, M.; Barrientos, L.; Bernabeu, J.; Lacasta, C.; Muñoz, E.; Ros, A.; Roser, J.; Viegas, R.; Llosa, G. doi  openurl
  Title Influence of the background in Compton camera images for proton therapy treatment monitoring Type Journal Article
  Year 2023 Publication Physics in Medicine and Biology Abbreviated Journal Phys. Med. Biol.  
  Volume (down) 68 Issue 14 Pages 144001 - 16pp  
  Keywords Compton imaging; Compton camera; proton therapy; treatment monitoring; Monte Carlo simulation; image reconstruction; background  
  Abstract Objective. Background events are one of the most relevant contributions to image degradation in Compton camera imaging for hadron therapy treatment monitoring. A study of the background and its contribution to image degradation is important to define future strategies to reduce the background in the system. Approach. In this simulation study, the percentage of different kinds of events and their contribution to the reconstructed image in a two-layer Compton camera have been evaluated. To this end, GATE v8.2 simulations of a proton beam impinging on a PMMA phantom have been carried out, for different proton beam energies and at different beam intensities. Main results. For a simulated Compton camera made of Lanthanum (III) Bromide monolithic crystals, coincidences caused by neutrons arriving from the phantom are the most common type of background produced by secondary radiations in the Compton camera, causing between 13% and 33% of the detected coincidences, depending on the beam energy. Results also show that random coincidences are a significant cause of image degradation at high beam intensities, and their influence in the reconstructed images is studied for values of the time coincidence windows from 500 ps to 100 ns. Significance. Results indicate the timing capabilities required to retrieve the fall-off position with good precision. Still, the noise observed in the image when no randoms are considered make us consider further background rejection methods.  
  Address [Borja-Lloret, M.; Barrientos, L.; Bernabeu, J.; Lacasta, C.; Munoz, E.; Ros, A.; Roser, J.; Viegas, R.; Llosa, G.] Inst Fis Corpuscular IFIC, CSIC UV, Valencia, Spain, Email: Marina.Borja@csic.es  
  Corporate Author Thesis  
  Publisher IOP Publishing Ltd Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0031-9155 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:001022671300001 Approved no  
  Is ISI yes International Collaboration no  
  Call Number IFIC @ pastor @ Serial 5571  
Permanent link to this record
 

 
Author Roser, J.; Barrientos, L.; Bernabeu, J.; Borja-Lloret, M.; Muñoz, E.; Ros, A.; Viegas, R.; Llosa, G. doi  openurl
  Title Joint image reconstruction algorithm in Compton cameras Type Journal Article
  Year 2022 Publication Physics in Medicine and Biology Abbreviated Journal Phys. Med. Biol.  
  Volume (down) 67 Issue 15 Pages 155009 - 15pp  
  Keywords Compton camera; compton imaging; hadron therapy; image reconstruction; LM-MLEM; Monte Carlo simulations; multi-layer compton telescope  
  Abstract Objective. To demonstrate the benefits of using an joint image reconstruction algorithm based on the List Mode Maximum Likelihood Expectation Maximization that combines events measured in different channels of information of a Compton camera. Approach. Both simulations and experimental data are employed to show the algorithm performance. Main results. The obtained joint images present improved image quality and yield better estimates of displacements of high-energy gamma-ray emitting sources. The algorithm also provides images that are more stable than any individual channel against the noisy convergence that characterizes Maximum Likelihood based algorithms. Significance. The joint reconstruction algorithm can improve the quality and robustness of Compton camera images. It also has high versatility, as it can be easily adapted to any Compton camera geometry. It is thus expected to represent an important step in the optimization of Compton camera imaging.  
  Address [Roser, J.; Barrientos, L.; Bernabeu, J.; Borja-Lloret, M.; Munoz, E.; Ros, A.; Viegas, R.; Llosa, G.] CSIC UV, Inst Fis Corpuscular IFIC, Valencia, Spain, Email: Jorge.Roser@ific.uv.es  
  Corporate Author Thesis  
  Publisher IOP Publishing Ltd Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0031-9155 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000827830200001 Approved no  
  Is ISI yes International Collaboration no  
  Call Number IFIC @ pastor @ Serial 5298  
Permanent link to this record
 

 
Author Borys, D. et al; Brzezinski, K. doi  openurl
  Title ProTheRaMon-a GATE simulation framework for proton therapy range monitoring using PET imaging Type Journal Article
  Year 2022 Publication Physics in Medicine and Biology Abbreviated Journal Phys. Med. Biol.  
  Volume (down) 67 Issue 22 Pages 224002 - 15pp  
  Keywords proton therapy; GATE; Monte Carlo simulations; J-PET; medical imaging  
  Abstract Objective. This paper reports on the implementation and shows examples of the use of the ProTheRaMon framework for simulating the delivery of proton therapy treatment plans and range monitoring using positron emission tomography (PET). ProTheRaMon offers complete processing of proton therapy treatment plans, patient CT geometries, and intra-treatment PET imaging, taking into account therapy and imaging coordinate systems and activity decay during the PET imaging protocol specific to a given proton therapy facility. We present the ProTheRaMon framework and illustrate its potential use case and data processing steps for a patient treated at the Cyclotron Centre Bronowice (CCB) proton therapy center in Krakow, Poland. Approach. The ProTheRaMon framework is based on GATE Monte Carlo software, the CASToR reconstruction package and in-house developed Python and bash scripts. The framework consists of five separated simulation and data processing steps, that can be further optimized according to the user's needs and specific settings of a given proton therapy facility and PET scanner design. Main results. ProTheRaMon is presented using example data from a patient treated at CCB and the J-PET scanner to demonstrate the application of the framework for proton therapy range monitoring. The output of each simulation and data processing stage is described and visualized. Significance. We demonstrate that the ProTheRaMon simulation platform is a high-performance tool, capable of running on a computational cluster and suitable for multi-parameter studies, with databases consisting of large number of patients, as well as different PET scanner geometries and settings for range monitoring in a clinical environment. Due to its modular structure, the ProTheRaMon framework can be adjusted for different proton therapy centers and/or different PET detector geometries. It is available to the community via github (Borys et al 2022).  
  Address [Borys, Damian] Silesian Tech Univ, Dept Syst Biol & Engn, Gliwice, Poland, Email: damin.borys@polsl.pl  
  Corporate Author Thesis  
  Publisher IOP Publishing Ltd Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0031-9155 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000885248200001 Approved no  
  Is ISI yes International Collaboration no  
  Call Number IFIC @ pastor @ Serial 5416  
Permanent link to this record
 

 
Author Etxebeste, A.; Dauvergne, D.; Fontana, M.; Letang, J.M.; Llosa, G.; Muñoz, E.; Oliver, J.F.; Testa, E.; Sarrut, D. doi  openurl
  Title CCMod: a GATE module for Compton camera imaging simulation Type Journal Article
  Year 2020 Publication Physics in Medicine and Biology Abbreviated Journal Phys. Med. Biol.  
  Volume (down) 65 Issue 5 Pages 055004 - 17pp  
  Keywords Monte Carlo; simulation; gamma imaging; Compton camera  
  Abstract Compton cameras are gamma-ray imaging systems which have been proposed for a wide variety of applications such as medical imaging, nuclear decommissioning or homeland security. In the design and optimization of such a system Monte Carlo simulations play an essential role. In this work, we propose a generic module to perform Monte Carlo simulations and analyses of Compton Camera imaging which is included in the open-source GATE/Geant4 platform. Several digitization stages have been implemented within the module to mimic the performance of the most commonly employed detectors (e.g. monolithic blocks, pixelated scintillator crystals, strip detectors...). Time coincidence sorter and sequence coincidence reconstruction are also available in order to aim at providing modules to facilitate the comparison and reproduction of the data taken with different prototypes. All processing steps may be performed during the simulation (on-the-fly mode) or as a post-process of the output files (offline mode). The predictions of the module have been compared with experimental data in terms of energy spectra, angular resolution, efficiency and back-projection image reconstruction. Consistent results within a 3-sigma interval were obtained for the energy spectra except for low energies where small differences arise. The angular resolution measure for incident photons of 1275 keV was also in good agreement between both data sets with a value close to 13 degrees. Moreover, with the aim of demonstrating the versatility of such a tool the performance of two different Compton camera designs was evaluated and compared.  
  Address [Etxebeste, A.; Letang, J. M.; Sarrut, D.] Univ Lyon 1, Univ Lyon, CREATIS, CNRS UMR5220,Inserm U1044,INSA Lyon, Lyon, France, Email: ane.etxebeste@creatis.insa-lyon.fr  
  Corporate Author Thesis  
  Publisher Iop Publishing Ltd Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0031-9155 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000519034800001 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 4321  
Permanent link to this record
 

 
Author Muñoz, E.; Barrientos, L.; Bernabeu, J.; Borja-Lloret, M.; Llosa, G.; Ros, A.; Roser, J.; Oliver, J.F. doi  openurl
  Title A spectral reconstruction algorithm for two-plane Compton cameras Type Journal Article
  Year 2020 Publication Physics in Medicine and Biology Abbreviated Journal Phys. Med. Biol.  
  Volume (down) 65 Issue 2 Pages 025011 - 17pp  
  Keywords Compton imaging; Compton camera; hadron therapy; image reconstruction  
  Abstract One factor limiting the current applicability extent of hadron therapy is the lack of a reliable method for real time treatment monitoring. The use of Compton imaging systems as monitors requires the correct reconstruction of the distribution of prompt gamma productions during patient irradiation. In order to extract the maximum information from all the measurable events, we implemented a spectral reconstruction method that assigns to all events a probability of being either partial or total energy depositions. The method, implemented in a list-mode maximum likelihood expectation maximization algorithm, generates a four dimensional image in the joint spatial-spectral domain, in which the voxels containing the emission positions and energies are obtained. The analytical model used for the system response function is also employed to derive an analytical expression for the sensitivity, which is calculated via Monte Carlo integration. The performance of the method is evaluated through reconstruction of various experimental and simulated sources with different spatial and energy distributions. The results show that the proposed method can recover the spectral and spatial information simultaneously, but only under the assumption of ideal measurements. The analysis of the Monte Carlo simulations has led to the identification of two important degradation sources: the mispositioning of the gamma interaction point and the missing energy recorded in the interaction. Both factors are related to the high energy transferred to the recoil electrons, which can travel far from the interaction point and even escape the detector. These effects prevent the direct application of the current method in more realistic scenarios. Nevertheless, experimental point-like sources have been accurately reconstructed and the spatial distributions and spectral emission of complex simulated phantoms can be identified.  
  Address [Munoz, Enrique; Barrientos, Luis; Bernabeu, Jose; Borja-Lloret, Marina; Llosa, Gabriela; Ros, Ana; Roser, Jorge; Oliver, Josep F.] Univ Valencia, CSIC, Inst Fis Corpuscular, Valencia, Spain, Email: Enrique.Munoz@ific.uv.es  
  Corporate Author Thesis  
  Publisher Iop Publishing Ltd Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0031-9155 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000520111400001 Approved no  
  Is ISI yes International Collaboration no  
  Call Number IFIC @ pastor @ Serial 4332  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records:
ific federMinisterio de Ciencia e InnovaciĆ³nAgencia Estatal de Investigaciongva