|   | 
Details
   web
Records
Author Lauritsen, T. et al; Perez-Vidal, R.M.
Title Characterization of a gamma-ray tracking array: A comparison of GRETINA and Gammasphere using a Co-60 source Type Journal Article
Year 2016 Publication Nuclear Instruments & Methods in Physics Research A Abbreviated Journal Nucl. Instrum. Methods Phys. Res. A
Volume (up) 836 Issue Pages 46-56
Keywords Segmented germanium detectors; Efficiency measurements; gamma-Ray tracking; Gammasphere; GRETINA; GRETA; gamma-Ray spectroscopy; Nuclear structure
Abstract In this paper; we provide a formalism for the characterization of tracking arrays with emphasis on the proper corrections required to extract their photopeak efficiencies and peak-to-total ratios. The methods are first applied to Gammasphere, a well characterized 4 pi array based on the principle of Compton suppression, and subsequently to GRETINA. The tracking efficiencies are then discussed and some guidelines as to what clustering angle to use in the tracking algorithm are presented. It was possible, using GEANT4 simulations, to scale the measured efficiencies up to the expected values for the full 4 pi implementation of GRETA.
Address [Lauritsen, T.; Zhu, S.; Ayangeakaa, A. D.; Carpenter, M. P.; Greene, J. P.; Janssens, R. V. F.; Khoo, T. L.; Seweryniak, D.] Argonne Natl Lab, 9700 S Cass Ave, Argonne, IL 60439 USA, Email: torben@anl.gov
Corporate Author Thesis
Publisher Elsevier Science Bv Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0168-9002 ISBN Medium
Area Expedition Conference
Notes WOS:000385601400007 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 2830
Permanent link to this record
 

 
Author Pasqualato, G. et al; Gadea, A.; Jurado, M.
Title An alternative viewpoint on the nuclear structure towards 100Sn: Lifetime measurements in 105Sn Type Journal Article
Year 2023 Publication Physics Letters B Abbreviated Journal Phys. Lett. B
Volume (up) 845 Issue Pages 138148 - 7pp
Keywords Nuclear structure; gamma-ray spectroscopy; Transition probabilities; Neutron-deficient isotopes; Odd-mass nuclei; Lifetime measurements
Abstract This work aims at presenting an alternative approach to the long standing problem of the B(E2) values in Sn isotopes in the vicinity of the N=Z double-magic nucleus Sn-100, until now predominantly measured with relativistic and intermediate-energy Coulomb excitation reactions. The direct measurement of the lifetime of low-lying excited states in odd-even Sn isotopes provides a new and precise guidance for the theoretical description of the nuclear structure in this region. Lifetime measurements have been performed in Sn-105 for the first time with the coincidence Recoil Distance Doppler Shift technique. The lifetime results for the 7/2(1)(+) first excited state and the 11/2(1)(+) state, 2(+)(Sn-104) circle times nu 1g(7/2) multiplet member, are discussed in comparison with state-of-the-art shell model and mean field calculations, highlighting the crucial contribution of proton excitation across the core of Sn-100. The reduced transition probability B(E2) of the 11/2(1)(+) core-coupled state points out an enhanced staggering with respect to the B(E2; 2(1)(+) -> 0(1)(+)) in the even-mass Sn-104 and Sn-106 isotopes.
Address [Pasqualato, G.; Mengonia, D.; Goasduff, A.; Lenzi, S. M.; Menegazzo, R.; Montaner-Piza, A.; Recchia, F.; Testov, D.] INFN, Sez Padova, Padua, Italy, Email: giorgia.pasqualato@IJCLAB.IN2P3.FR
Corporate Author Thesis
Publisher Elsevier Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0370-2693 ISBN Medium
Area Expedition Conference
Notes WOS:001084426400001 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 5725
Permanent link to this record
 

 
Author Korichi, A.; Lauritsen, T.; Wilson, A.N.; Dudouet, J.; Clement, E.; Lalovic, N.; Perez-Vidal, R.M.; Pietri, S.; Ralet, D.; Stezowski, O.
Title Performance of a gamma-ray tracking array: Characterizing the AGATA array using a Co-60 source Type Journal Article
Year 2017 Publication Nuclear Instruments & Methods in Physics Research A Abbreviated Journal Nucl. Instrum. Methods Phys. Res. A
Volume (up) 872 Issue Pages 80-86
Keywords Segmented germanium detectors; Efficiency measurements; gamma-ray tracking; AGATA; gamma-ray spectroscopy; Nuclear structure
Abstract The AGATA (Advanced GAmma Tracking Array) tracking detector is being designed to far surpass the performance of the previous generation, Compton-suppressed arrays. In this paper, a characterization of AGATA is provided based on data from the second GSI campaign. Emphasis is placed on the proper corrections required to extract the absolute photopeak efficiency and peak-to-total ratio. The performance after tracking is extracted and GEANT4 simulations are used both to understand the results and to scale the measurements up to predicted values for the full 4 pi implementation of the device.
Address [Korichi, A.] CNRS, IN2P3, CSNSM, Bat 104-108,Orsay Campus, F-91405 Orsay, France, Email: Amel.Korichi@csnsm.in2p3.fr
Corporate Author Thesis
Publisher Elsevier Science Bv Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0168-9002 ISBN Medium
Area Expedition Conference
Notes WOS:000411755300009 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 3311
Permanent link to this record
 

 
Author Valiente-Dobon, J.J. et al; Egea, J.; Huyuk, T.; Gadea, A.; Aliaga, R.; Jurado-Gomez, M.L.; Perez-Vidal, R.M.
Title NEDA-NEutron Detector Array Type Journal Article
Year 2019 Publication Nuclear Instruments & Methods in Physics Research A Abbreviated Journal Nucl. Instrum. Methods Phys. Res. A
Volume (up) 927 Issue Pages 81-86
Keywords NEDA; Nuclear structure; Gamma-ray spectroscopy; Neutron detector; Liquid scintillator; Digital electronics; Neutron-gamma discrimination
Abstract The NEutron Detector Array, NEDA, will form the next generation neutron detection system that has been designed to be operated in conjunction with gamma-ray arrays, such as the tracking-array AGATA, to aid nuclear spectroscopy studies. NEDA has been designed to be a versatile device, with high-detection efficiency, excellent neutron-gamma discrimination, and high rate capabilities. It will be employed in physics campaigns in order to maximise the scientific output, making use of the different stable and radioactive ion beams available in Europe. The first implementation of the neutron detector array NEDA with AGATA 1 pi was realised at GANIL. This manuscript reviews the various aspects of NEDA.
Address [Valiente-Dobon, J. J.; Jaworski, G.; Goasduff, A.; Egea, J.; Modamio, V; de Angelis, G.; Bissiato, E.; Carturan, S.; Cocconi, P.; Conventi, D.; Deltoro, J. M.; Hadynska-Klekn, K.; Illan, A.; Raggio, A.; Siciliano, M.; Zanon, I] Ist Nazl Fis Nucl, Lab Nazl Legnaro, Legnaro, Italy, Email: valiente@lnl.infn.it
Corporate Author Thesis
Publisher Elsevier Science Bv Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0168-9002 ISBN Medium
Area Expedition Conference
Notes WOS:000462142700010 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 3956
Permanent link to this record
 

 
Author Goasduff, A. et al; Gadea, A.
Title The GALILEO gamma-ray array at the Legnaro National Laboratories Type Journal Article
Year 2021 Publication Nuclear Instruments & Methods in Physics Research A Abbreviated Journal Nucl. Instrum. Methods Phys. Res. A
Volume (up) 1015 Issue Pages 165753 - 15pp
Keywords High-resolution gamma-ray spectroscopy; HPGe; Silicon; Neutron; Electronics; DAQ
Abstract GALILEO, a new 4 pi high-resolution gamma-detection array, based on HPGe detectors, has been developed and installed at the Legnaro National Laboratories. The GALILEO array greatly benefits from a fully-digital readout chain, customized DAQ, and a variety of complementary detectors to improve the resolving power by the detection of particles, ions or high-energy gamma-ray transitions. In this work, a full description of the array, including electronics and DAQ, is presented together with its complementary instrumentation.
Address [Goasduff, A.; Valiente-Dobon, J. J.; Barrientos, D.; Biasotto, M.; Brugnara, D.; Cocconi, P.; Cortes, M. L.; de Angelis, G.; Egea, F. J.; Fantinel, S.; Gambalonga, A.; Gottardo, A.; Gozzelino, A.; Gregor, E. T.; Gulmini, M.; Hadynska-Klek, K.; Illana, A.; Jaworski, G.; Napoli, D. R.; Pellumaj, J.; Perez-Vidal, R. M.; Rosso, D.; Siciliano, M.; Toniolo, N.; Volpe, V.; Zanon, I] INFN Lab Nazl Legnaro, Legnaro, Italy, Email: alain.goasduff@lnl.infn.it
Corporate Author Thesis
Publisher Elsevier Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0168-9002 ISBN Medium
Area Expedition Conference
Notes WOS:000717077900015 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 5025
Permanent link to this record