|   | 
Details
   web
Records
Author Yang, W.Q.; Pan, S.; Mena, O.; Di Valentino, E.
Title On the dynamics of a dark sector coupling Type Journal Article
Year 2023 Publication Journal of High Energy Astrophysics Abbreviated Journal J. High Energy Astrophys.
Volume (down) 40 Issue Pages 19-40
Keywords Dark matter; Dark energy; Interacting cosmologies; Cosmological observations
Abstract Interacting dark energy models may play a crucial role in explaining several important observational issues in modern cosmology and also may provide a solution to current cosmological tensions. Since the phenomenology of the dark sector could be extremely rich, one should not restrict the interacting models to have a coupling parameter which is constant in cosmic time, rather allow for its dynamical behaviour, as it is common practice in the literature when dealing with other dark energy properties, as the dark energy equation of state. We present here a compendium of the current cosmological constraints on a large variety of interacting models, investigating scenarios where the coupling parameter of the interaction function and the dark energy equation of state can be either constant or dynamical. For the most general schemes, in which both the coupling parameter of the interaction function and the dark energy equation of state are dynamical, we find 95% CL evidence for a dark energy component at early times and slightly milder evidence for a dynamical dark coupling for the most complete observational data set exploited here, which includes CMB, BAO and Supernova Ia measurements. Interestingly, there are some cases where a dark energy component different from the cosmological constant case at early times together with a coupling different from zero today, can alleviate both the H-0 and S-8 tension for the full dataset combination considered here. Due to the energy exchange among the dark sectors, the current values of the matter energy density and of the clustering parameter sigma(8) are shifted from their ACDM-like values. This fact makes future surveys, especially those focused on weak lensing measurements, unique tools to test the nature and the couplings of the dark energy sector. (c) 2023 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons .org /licenses /by /4 .0/).
Address [Yang, Weiqiang] Liaoning Normal Univ, Dept Phys, Dalian 116029, Peoples R China, Email: d11102004@163.com;
Corporate Author Thesis
Publisher Elsevier Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2214-4048 ISBN Medium
Area Expedition Conference
Notes WOS:001089001500001 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 5761
Permanent link to this record
 

 
Author Di Valentino, E.; Mena, O.; Pan, S.; Visinelli, L.; Yang, W.Q.; Melchiorri, A.; Mota, D.F.; Riess, A.G.; Silk, J.
Title In the realm of the Hubble tension – a review of solutions Type Journal Article
Year 2021 Publication Classical and Quantum Gravity Abbreviated Journal Class. Quantum Gravity
Volume (down) 38 Issue 15 Pages 153001 - 110pp
Keywords cosmological parameters; cosmology; dark energy; Hubble constant
Abstract The simplest ΛCDM model provides a good fit to a large span of cosmological data but harbors large areas of phenomenology and ignorance. With the improvement of the number and the accuracy of observations, discrepancies among key cosmological parameters of the model have emerged. The most statistically significant tension is the 4 sigma to 6 sigma disagreement between predictions of the Hubble constant, H (0), made by the early time probes in concert with the 'vanilla' ΛCDM cosmological model, and a number of late time, model-independent determinations of H (0) from local measurements of distances and redshifts. The high precision and consistency of the data at both ends present strong challenges to the possible solution space and demands a hypothesis with enough rigor to explain multiple observations-whether these invoke new physics, unexpected large-scale structures or multiple, unrelated errors. A thorough review of the problem including a discussion of recent Hubble constant estimates and a summary of the proposed theoretical solutions is presented here. We include more than 1000 references, indicating that the interest in this area has grown considerably just during the last few years. We classify the many proposals to resolve the tension in these categories: early dark energy, late dark energy, dark energy models with 6 degrees of freedom and their extensions, models with extra relativistic degrees of freedom, models with extra interactions, unified cosmologies, modified gravity, inflationary models, modified recombination history, physics of the critical phenomena, and alternative proposals. Some are formally successful, improving the fit to the data in light of their additional degrees of freedom, restoring agreement within 1-2 sigma between Planck 2018, using the cosmic microwave background power spectra data, baryon acoustic oscillations, Pantheon SN data, and R20, the latest SH0ES Team Riess, et al (2021 Astrophys. J. 908 L6) measurement of the Hubble constant (H (0) = 73.2 +/- 1.3 km s(-1) Mpc(-1) at 68% confidence level). However, there are many more unsuccessful models which leave the discrepancy well above the 3 sigma disagreement level. In many cases, reduced tension comes not simply from a change in the value of H (0) but also due to an increase in its uncertainty due to degeneracy with additional physics, complicating the picture and pointing to the need for additional probes. While no specific proposal makes a strong case for being highly likely or far better than all others, solutions involving early or dynamical dark energy, neutrino interactions, interacting cosmologies, primordial magnetic fields, and modified gravity provide the best options until a better alternative comes along.
Address [Di Valentino, Eleonora] Univ Durham, Inst Particle Phys Phenomenol, Dept Phys, Durham DH1 3LE, England, Email: eleonora.di-valentino@durham.ac.uk
Corporate Author Thesis
Publisher Iop Publishing Ltd Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0264-9381 ISBN Medium
Area Expedition Conference
Notes WOS:000672148200001 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 4931
Permanent link to this record
 

 
Author Basilakos, S.; Mavromatos, N.E.; Mitsou, V.A.; Plionis, M.
Title Dynamics and constraints of the dissipative Liouville cosmology Type Journal Article
Year 2012 Publication Astroparticle Physics Abbreviated Journal Astropart Phys.
Volume (down) 36 Issue 1 Pages 7-17
Keywords Cosmology; Dark matter; Dark energy
Abstract In this article we investigate the properties of the FLRW flat cosmological models in which the cosmic expansion of the Universe is affected by a dilaton dark energy (Liouville scenario). In particular, we perform a detailed study of these models in the light of the latest cosmological data, which serves to illustrate the phenomenological viability of the new dark energy paradigm as a serious alternative to the traditional scalar field approaches. By performing a joint likelihood analysis of the recent supernovae type la data (SNIa), the differential ages of passively evolving galaxies, and the baryonic acoustic oscillations (BAOs) traced by the Sloan Digital Sky Survey (SDSS), we put tight constraints on the main cosmological parameters. Furthermore, we study the linear matter fluctuation field of the above Liouville cosmological models. In this framework, we compare the observed growth rate of clustering measured from the optical galaxies with those predicted by the current Liouville models. Performing various statistical tests we show that the Liouville cosmological model provides growth rates that match well with the observed growth rate. To further test the viability of the models under study, we use the Press-Schechter formalism to derive their expected redshift distribution of cluster-size halos that will be provided by future X-ray and Sunyaev-Zeldovich cluster surveys. We find that the Hubble flow differences between the Liouville and the LambdaCDM models provide a significantly different halo redshift distribution, suggesting that the models can be observationally distinguished.
Address [Mitsou, Vasiliki A.] Univ Valencia, CSIC, Inst Fis Corpuscular IFIC, E-46071 Valencia, Spain, Email: vasiliki.mitsou@ific.uv.es
Corporate Author Thesis
Publisher Elsevier Science Bv Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0927-6505 ISBN Medium
Area Expedition Conference
Notes WOS:000309787000002 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 1188
Permanent link to this record
 

 
Author Di Valentino, E.; Melchiorri, A.; Mena, O.; Vagnozzi, S.
Title Interacting dark energy in the early 2020s: A promising solution to the H-0 and cosmic shear tensions Type Journal Article
Year 2020 Publication Physics of the Dark Universe Abbreviated Journal Phys. Dark Universe
Volume (down) 30 Issue Pages 100666 - 12pp
Keywords Hubble tension; Cosmological parameters; Dark matter; Dark energy; Interacting dark energy
Abstract We examine interactions between dark matter and dark energy in light of the latest cosmological observations, focusing on a specific model with coupling proportional to the dark energy density. Our data includes Cosmic Microwave Background (CMB) measurements from the Planck 2018 legacy data release, late-time measurements of the expansion history from Baryon Acoustic Oscillations (BAO) and Supernovae Type Ia (SNeIa), galaxy clustering and cosmic shear measurements from the Dark Energy Survey Year 1 results, and the 2019 local distance ladder measurement of the Hubble constant H-0 from the Hubble Space Telescope. Considering Planck data both in combination with BAO or SNeIa data reduces the H-0 tension to a level which could possibly be compatible with a statistical fluctuation. The very same model also significantly reduces the Omega(m) – sigma(8) tension between CMB and cosmic shear measurements. Interactions between the dark sectors of our Universe remain therefore a promising joint solution to these persisting cosmological tensions.
Address [Di Valentino, Eleonora] Univ Manchester, Jodrell Bank, Ctr Astrophys, Manchester M13 9PL, Lancs, England, Email: eleonora.divalentino@manchester.ac.uk;
Corporate Author Thesis
Publisher Elsevier Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2212-6864 ISBN Medium
Area Expedition Conference
Notes WOS:000595300400037 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 4646
Permanent link to this record
 

 
Author Olmo, G.J.
Title Palatini approach to modified gravity: f(R) theories and beyond Type Journal Article
Year 2011 Publication International Journal of Modern Physics D Abbreviated Journal Int. J. Mod. Phys. D
Volume (down) 20 Issue 4 Pages 413-462
Keywords Palatini formalism; modified gravity; cosmic speed-up; dark energy; dark matter; MOND; quantum gravity phenomenology; Hamiltonian formulation; stellar structure; Cauchy problem; solar system tests
Abstract We review the recent literature on modified theories of gravity in the Palatini approach. After discussing the motivations that lead to consider alternatives to Einstein's theory and to treat the metric and the connection as independent objects, we review several topics that have been recently studied within this framework. In particular, we provide an in-depth analysis of the cosmic speed-up problem, laboratory and solar system tests, the structure of stellar objects, the Cauchy problem, and bouncing cosmologies. We also discuss the importance of going beyond the f(R) models to capture other phenomenological aspects related with dark matter/energy and quantum gravity.
Address [Olmo, Gonzalo J.] Univ Valencia CSIC, Dept Fis Teor, Valencia, Spain, Email: gonzalo.olmo@uv.es
Corporate Author Thesis
Publisher World Scientific Publ Co Pte Ltd Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0218-2718 ISBN Medium
Area Expedition Conference
Notes WOS:000290228200001 Approved no
Is ISI yes International Collaboration no
Call Number IFIC @ pastor @ Serial 961
Permanent link to this record