|   | 
Details
   web
Records
Author Guerrero, M.; Mora-Perez, G.; Olmo, G.J.; Orazi, E.; Rubiera-Garcia, D.
Title Charged BTZ-type solutions in Eddington-inspired Born-Infeld gravity Type Journal Article
Year 2021 Publication Journal of Cosmology and Astroparticle Physics Abbreviated Journal J. Cosmol. Astropart. Phys.
Volume (down) 11 Issue 11 Pages 025 - 23pp
Keywords modified gravity; Exact solutions; black holes and black hole thermodynamics in GR and beyond; Wormholes
Abstract We construct an axially symmetric solution of Eddington-inspired Born-Infeld gravity coupled to an electromagnetic field in 2 + 1 dimensions including a (negative) cosmological constant term. This is achieved by using a recently developed mapping procedure that allows to generate solutions in certain families of metric-affine gravity theories starting from a known seed solution of General Relativity, which in the present case corresponds to the electrically charged Banados-Teitelboim-Zanelli (BTZ) solution. We discuss the main features of the new configurations, including the modifications to the ergospheres and horizons, the emergence of wormhole structures, and the consequences for the regularity (or not) of these space-times via geodesic completeness.
Address [Guerrero, Merce; Rubiera-Garcia, Diego] Univ Complutense Madrid, Dept Fis Teor, Plaza Ciencias S-N, E-28040 Madrid, Spain, Email: merguerr@ucm.es;
Corporate Author Thesis
Publisher IOP Publishing Ltd Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1475-7516 ISBN Medium
Area Expedition Conference
Notes WOS:000727716400006 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 5050
Permanent link to this record
 

 
Author Alencar, G.; Estrada, M.; Muniz, C.R.; Olmo, G.J.
Title Dymnikova GUP-corrected black holes Type Journal Article
Year 2023 Publication Journal of Cosmology and Astroparticle Physics Abbreviated Journal J. Cosmol. Astropart. Phys.
Volume (down) 11 Issue 11 Pages 100 - 23pp
Keywords Exact solutions; black holes and black hole thermodynamics in GR and beyond; GR black holes; modified gravity; quantum black holes
Abstract We consider the impact of Generalized Uncertainty Principle (GUP) effects on the Dymnikova regular black hole. The minimum length scale introduced by the GUP modifies the energy density associated with the gravitational source, referred to as the Dymnikova vacuum, based on its analogy with the gravitational counterpart of the Schwinger effect. We present an approximated analytical solution (together with exact numerical results for comparison) that encompasses a wide range of black hole sizes, whose properties crucially depend on the ratio between the de Sitter core radius and the GUP scale. The emergence of a wormhole inside the de Sitter core in the innermost region of the object is one of the most relevant features of this family of solutions. Our findings demonstrate that these solutions remain singularity free, confirming the robustness of the Dymnikova regular black hole under GUP corrections. Regarding energy conditions, we find that the violation of the strong, weak, and null energy conditions which is characteristic of the pure Dymnikova case does not occur at Planckian scales in the GUP corrected solution. This contrast suggests a departure from conventional expectations and highlights the influence of quantum corrections and the GUP in modifying the energy conditions near the Planck scale.
Address [Alencar, G.; Olmo, Gonzalo J.] Univ Fed Ceara, Dept Fis, Caixa Postal 6030,Campus Pici, BR-60455760 Fortaleza, Ceara, Brazil, Email: geova@fisica.ufc.br;
Corporate Author Thesis
Publisher IOP Publishing Ltd Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1475-7516 ISBN Medium
Area Expedition Conference
Notes WOS:001121623400017 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 5868
Permanent link to this record
 

 
Author De Romeri, V.; Martinez-Mirave, P.; Tortola, M.
Title Signatures of primordial black hole dark matter at DUNE and THEIA Type Journal Article
Year 2021 Publication Journal of Cosmology and Astroparticle Physics Abbreviated Journal J. Cosmol. Astropart. Phys.
Volume (down) 10 Issue 10 Pages 051 - 21pp
Keywords dark matter theory; neutrino experiments; primordial black holes
Abstract Primordial black holes (PBHs) are a potential dark matter candidate whose masses can span over many orders of magnitude. If they have masses in the 10(15)-10(17) g range, they can emit sizeable fluxes of MeV neutrinos through evaporation via Hawking radiation. We explore the possibility of detecting light (non-)rotating PBHs with future neutrino experiments. We focus on two next generation facilities: the Deep Underground Neutrino Experiment (DUNE) and THEIA. We simulate the expected event spectra at both experiments assuming different PBH mass distributions and spins, and we extract the expected 95% C.L. sensitivities to these scenarios. Our analysis shows that future neutrino experiments like DUNE and THEIA will be able to set competitive constraints on PBH dark matter, thus providing complementary probes in a part of the PBH parameter space currently constrained mainly by photon data.
Address [De Romeri, Valentina] Univ Valencia, Dept Fis Teor, Paterna 46980, Spain, Email: deromeri@ific.uv.es;
Corporate Author Thesis
Publisher IOP Publishing Ltd Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1475-7516 ISBN Medium
Area Expedition Conference
Notes WOS:000758221400007 Approved no
Is ISI yes International Collaboration no
Call Number IFIC @ pastor @ Serial 5140
Permanent link to this record
 

 
Author Bernal, N.; Munoz-Albornoz, V.; Palomares-Ruiz, S.; Villanueva-Domingo, P.
Title Current and future neutrino limits on the abundance of primordial black holes Type Journal Article
Year 2022 Publication Journal of Cosmology and Astroparticle Physics Abbreviated Journal J. Cosmol. Astropart. Phys.
Volume (down) 10 Issue 10 Pages 068 - 38pp
Keywords neutrino detectors; primordial black holes
Abstract Primordial black holes (PBHs) formed in the early Universe are sources of neutrinos emitted via Hawking radiation. Such astrophysical neutrinos could be detected at Earth and constraints on the abundance of comet-mass PBHs could be derived from the null observation of this neutrino flux. Here, we consider non-rotating PBHs and improve constraints using Super-Kamiokande neutrino data, as well as we perform forecasts for next-generation neutrino (Hyper-Kamiokande, JUNO, DUNE) and dark matter (DARWIN, ARGO) detectors, which we compare. For PBHs less massive than " few x 1014 g, PBHs would have already evaporated by now, whereas more massive PBHs would still be present and would constitute a fraction of the dark matter of the Universe. We consider monochromatic and extended (log-normal) mass distributions, and a PBH mass range spanning from 1012 g to ti 1016 g. Finally, we also compare our results with previous ones in the literature.
Address [Bernal, Nicolas] New York Univ Abu Dhabi, POB 129188, Abu Dhabi, U Arab Emirates, Email: nicolas.bernal@uan.edu.co;
Corporate Author Thesis
Publisher IOP Publishing Ltd Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1475-7516 ISBN Medium
Area Expedition Conference
Notes WOS:000882783900003 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 5412
Permanent link to this record
 

 
Author Balbinot, R.; Fabbri, A.
Title The Unruh Vacuum and the “In-Vacuum” in Reissner-Nordström Spacetime Type Journal Article
Year 2024 Publication Universe Abbreviated Journal Universe
Volume (down) 10 Issue 1 Pages 18 - 14pp
Keywords Hawking radiation; Unruh vacuum; Reissner-Nordstrom black holes
Abstract The Unruh vacuum is widely used as a quantum state to describe black hole evaporation since, near the horizon, it reproduces the physical state of a quantum field, the so-called “in-vacuum”, in the case where a black hole is formed by gravitational collapse. We examine the relation between these two quantum states in the background spacetime of a Reissner-Nordstrom black hole (both extremal and not), highlighting the similarities and striking differences.
Address [Balbinot, Roberto] Univ Bologna, Dipartimento Fis, Via Irnerio 46, I-40126 Bologna, Italy, Email: roberto.balbinot@unibo.it;
Corporate Author Thesis
Publisher Mdpi Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes WOS:001151025300001 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 5914
Permanent link to this record