|   | 
Details
   web
Records
Author Di Valentino, E.; Melchiorri, A.; Mena, O.; Pan, S.; Yang, W.Q.
Title Interacting dark energy in a closed universe Type Journal Article
Year 2021 Publication Monthly Notices of the Royal Astronomical Society Abbreviated Journal Mon. Not. Roy. Astron. Soc.
Volume (down) 502 Issue 1 Pages L23-L28
Keywords
Abstract Recent measurements of the Cosmic Microwave Anisotropies power spectra measured by the Planck satellite show a preference for a closed universe at more than 99 per cent confidence level (CL). Such a scenario is however in disagreement with several low redshift observables, including luminosity distances of Type Ia supernovae. Here we show that interacting dark energy (IDE) models can ease the discrepancies between Planck and supernovae Ia data in a closed Universe, leading to a preference for both a coupling and a curvature different from zero above the 99 per cent CL. Therefore IDE cosmologies remain as very appealing scenarios, as they can provide the solution to a number of observational tensions in different fiducial cosmologies. The results presented here strongly favour broader analyses of cosmological data, and suggest that relaxing the usual flatness and vacuum energy assumptions can lead to a much better agreement among theory and observations.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0035-8711 ISBN Medium
Area Expedition Conference
Notes WOS:000662142100005 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 4879
Permanent link to this record
 

 
Author Di Valentino, E.; Mena, O.
Title A fake interacting dark energy detection? Type Journal Article
Year 2021 Publication Monthly Notices of the Royal Astronomical Society Abbreviated Journal Mon. Not. Roy. Astron. Soc.
Volume (down) 500 Issue 1 Pages L22-L26
Keywords cosmic background radiation; cosmological parameters; dark energy
Abstract Models involving an interaction between the dark matter and the dark energy sectors have been proposed to alleviate the long-standing Hubble constant tension. In this paper, we analyse whether the constraints and potential hints obtained for these interacting models remain unchanged when using simulated Planck data. Interestingly, our simulations indicate that a dangerous fake detection for a non-zero interaction among the dark matter and the dark energy fluids could arise when dealing with current cosmic microwave background (CMB) Planck measurements alone. The very same hypothesis is tested against future CMB observations, finding that only cosmic variance limited polarization experiments, such as PICO or PRISM, could be able to break the existing parameter degeneracies and provide reliable cosmological constraints. This paper underlines the extreme importance of confronting the results arising from data analyses with those obtained with simulations when extracting cosmological limits within exotic cosmological scenarios.
Address [Di Valentino, Eleonora] Univ Manchester, Jodrell Bank Ctr Astrophys, Sch Phys & Astron, Oxford Rd, Manchester M13 9PL, Lancs, England, Email: eleonora.divalentino@manchester.ac.uk
Corporate Author Thesis
Publisher Oxford Univ Press Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0035-8711 ISBN Medium
Area Expedition Conference
Notes WOS:000599143200006 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 4665
Permanent link to this record
 

 
Author Vagnozzi, S.; Visinelli, L.; Mena, O.; Mota, D.F.
Title Do we have any hope of detecting scattering between dark energy and baryons through cosmology? Type Journal Article
Year 2020 Publication Monthly Notices of the Royal Astronomical Society Abbreviated Journal Mon. Not. Roy. Astron. Soc.
Volume (down) 493 Issue 1 Pages 1139-1152
Keywords cosmic background radiation; cosmological parameters; cosm logy: observations; dark energy; large-scale structure of Universe
Abstract We consider the possibility that dark energy and baryons might scatter off each other. The type of interaction we consider leads to a pure momentum exchange, and does not affect the background evolution of the expansion history. We parametrize this interaction in an effective way at the level of Boltzmann equations. We compute the effect of dark energy-baryon scattering on cosmological observables, focusing on the cosmic microwave background (CMB) temperature anisotropy power spectrum and the matter power spectrum. Surprisingly, we find that even huge dark energy-baryon cross-sections sigma(xb) similar to O(b), which are generically excluded by non-cosmological probes such as collider searches or precision gravity tests, only leave an insignificant imprint on the observables considered. In the case of the CMB temperature power spectrum, the only imprint consists in a sub-per cent enhancement or depletion of power (depending whether or not the dark energy equation of state lies above or below -1) at very low multipoles, which is thus swamped by cosmic variance. These effects are explained in terms of differences in how gravitational potentials decay in the presence of a dark energy-baryon scattering, which ultimately lead to an increase or decrease in the late-time integrated Sachs-Wolfe power. Even smaller related effects are imprinted on the matter power spectrum. The imprints on the CMB are not expected to be degenerate with the effects due to altering the dark energy sound speed. We conclude that, while strongly appealing, the prospects for a direct detection of dark energy through cosmology do not seem feasible when considering realistic dark energy-baryon cross-sections. As a caveat, our results hold to linear order in perturbation theory.
Address [Vagnozzi, Sunny] Univ Cambridge, Kat Inst Cosmol, Madingley Rd, Cambridge CB3 0HA, England, Email: sunny.vagnozzi@ast.cam.ac.uk
Corporate Author Thesis
Publisher Oxford Univ Press Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0035-8711 ISBN Medium
Area Expedition Conference
Notes WOS:000518156100081 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 4320
Permanent link to this record
 

 
Author Anderson, L. et al; Mena, O.
Title The clustering of galaxies in the SDSS-III Baryon Oscillation Spectroscopic Survey: baryon acoustic oscillations in the Data Releases 10 and 11 Galaxy samples Type Journal Article
Year 2014 Publication Monthly Notices of the Royal Astronomical Society Abbreviated Journal Mon. Not. Roy. Astron. Soc.
Volume (down) 441 Issue 1 Pages 24-62
Keywords cosmological parameters; cosmology: observations; dark energy; distance scale; large-scale structure of Universe
Abstract We present a one per cent measurement of the cosmic distance scale from the detections of the baryon acoustic oscillations (BAO) in the clustering of galaxies from the Baryon Oscillation Spectroscopic Survey, which is part of the Sloan Digital Sky Survey III. Our results come from the Data Release 11 (DR11) sample, containing nearly one million galaxies and covering approximately 8500 square degrees and the redshift range 0.2 < z < 0.7. We also compare these results with those from the publicly released DR9 and DR10 samples. Assuming a concordance A cold dark matter (ACDM) cosmological model, the DR11 sample covers a volume of 13 Gpc(3) and is the largest region of the Universe ever surveyed at this density. We measure the correlation function and power spectrum, including density- field reconstruction of the BAO feature. The acoustic features are detected at a significance of over 7s in both the correlation function and power spectrum. Fitting for the position of the acoustic features measures the distance relative to the sound horizon at the drag epoch, r(d), which has a value of r(d,fid) = 149.28 Mpc in our fiducial cosmology. We find D-V = (1264 +/- 25 Mpc)(r(d)/r(d,fid)) at z = 0.32 and D-V = (2056 +/- 20 Mpc)(r(d)/r(d,fid)) at z = 0.57. At 1.0 per cent, this latter measure is the most precise distance constraint ever obtained from a galaxy survey. Separating the clustering along and transverse to the line of sight yields measurements at z = 0.57 of D-A = (1421 +/- 20 Mpc)(r(d)/r(d,fid)) and H = (96.8 +/- 3.4 kms(-1) Mpc(-1))(r(d),(fid)/r(d)). Our measurements of the distance scale are in good agreement with previous BAO measurements and with the predictions from cosmic microwave background data for a spatially flat CDM model with a cosmological constant.
Address [Anderson, Lauren; Bhardwaj, Vaishali] Univ Washington, Dept Astron, Seattle, WA 98195 USA, Email: djschlegel@lbl.gov;
Corporate Author Thesis
Publisher Oxford Univ Press Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0035-8711 ISBN Medium
Area Expedition Conference
Notes WOS:000336249300002 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 1791
Permanent link to this record
 

 
Author Anderson, L. et al; Mena, O.
Title The clustering of galaxies in the SDSS-III Baryon Oscillation Spectroscopic Survey: measuring D-A and H at z=0.57 from the baryon acoustic peak in the Data Release 9 spectroscopic Galaxy sample Type Journal Article
Year 2014 Publication Monthly Notices of the Royal Astronomical Society Abbreviated Journal Mon. Not. Roy. Astron. Soc.
Volume (down) 439 Issue 1 Pages 83-101
Keywords cosmological parameters; cosmology: observations; dark energy; distance scale; large scale structure of Universe
Abstract We present measurements of the angular diameter distance to and Hubble parameter at z = 0.57 from the measurement of the baryon acoustic peak in the correlation of galaxies from the Sloan Digital Sky Survey III Baryon Oscillation Spectroscopic Survey. Our analysis is based on a sample from Data Release 9 of 264 283 galaxies over 3275 square degrees in the redshift range 0.43 < z < 0.70. We use two different methods to provide robust measurement of the acoustic peak position across and along the line of sight in order to measure the cosmological distance scale. We find D-A(0.57) = 1408 +/- 45 Mpc and H(0.57) = 92.9 +/- 7.8 km s(-1) Mpc(-1) for our fiducial value of the sound horizon. These results from the anisotropic fitting are fully consistent with the analysis of the spherically averaged acoustic peak position presented in Anderson et al. Our distance measurements are a close match to the predictions of the standard cosmological model featuring a cosmological constant and zero spatial curvature.
Address [Anderson, Lauren] Univ Washington, Dept Astron, Seattle, WA 98195 USA, Email: djschlegel@lbl.gov
Corporate Author Thesis
Publisher Oxford Univ Press Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0035-8711 ISBN Medium
Area Expedition Conference
Notes WOS:000333297700026 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 1738
Permanent link to this record