|   | 
Details
   web
Records
Author Blennow, M.; Fernandez-Martinez, E.; Hernandez-Garcia, J.; Lopez-Pavon, J.; Marcano, X.; Naredo-Tuero, D.
Title Bounds on lepton non-unitarity and heavy neutrino mixing Type Journal Article
Year 2023 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.
Volume (down) 08 Issue 8 Pages 030 - 41pp
Keywords Electroweak Precision Physics; Neutrino Mixing; Sterile or Heavy Neutrinos
Abstract We present an updated and improved global fit analysis of current flavour and electroweak precision observables to derive bounds on unitarity deviations of the leptonic mixing matrix and on the mixing of heavy neutrinos with the active flavours. This new analysis is motivated by new and updated experimental results on key observables such as V-ud, the invisible decay width of the Z boson and the W boson mass. It also improves upon previous studies by considering the full correlations among the different observables and explicitly calibrating the test statistic, which may present significant deviations from a & chi;(2) distribution. The results are provided for three different Type-I seesaw scenarios: the minimal scenario with only two additional right-handed neutrinos, the next to minimal one with three extra neutrinos, and the most general one with an arbitrary number of heavy neutrinos that we parametrise via a generic deviation from a unitary leptonic mixing matrix. Additionally, we also analyze the case of generic deviations from unitarity of the leptonic mixing matrix, not necessarily induced by the presence of additional neutrinos. This last case relaxes some correlations among the parameters and is able to provide a better fit to the data. Nevertheless, inducing only leptonic unitarity deviations avoiding both the correlations implied by the right-handed neutrino extension as well as more strongly constrained operators is challenging and would imply significantly more complex UV completions.
Address [Blennow, Mattias] KTH Royal Inst Technol, AlbaNova Univ Ctr, Sch Engn Sci, Dept Phys, Roslagstullsbacken 21, S-10691 Stockholm, Sweden, Email: emb@kth.se;
Corporate Author Thesis
Publisher Springer Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1029-8479 ISBN Medium
Area Expedition Conference
Notes WOS:001044930400003 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 5607
Permanent link to this record
 

 
Author Bonilla, C.; Herms, J.; Medina, O.; Peinado, E.
Title Discrete dark matter mechanism as the source of neutrino mass scales Type Journal Article
Year 2023 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.
Volume (down) 06 Issue 6 Pages 078 - 23pp
Keywords Flavour Symmetries; Models for Dark Matter; Neutrino Mixing
Abstract The hierarchy in scale between atmospheric and solar neutrino mass splittings is investigated through two distinct neutrino mass mechanisms from tree-level and one-loop-level contributions. We demonstrate that the minimal discrete dark matter mechanism contains the ingredients for explaining this hierarchy. This scenario is characterized by adding new RH neutrinos and SU(2)-doublet scalars to the Standard Model as triplet representations of an A(4) flavor symmetry. The A(4) symmetry breaking, which occurs at the electroweak scale, leads to a residual DOUBLE-STRUCK CAPITAL Z(2) symmetry responsible for the dark matter stability and dictates the neutrino phenomenology. Finally, we show that to reproduce the neutrino mixing angles correctly, it is necessary to violate CP in the scalar potential.
Address [Bonilla, Cesar] Univ Catolica Norte, Dept Fis, Ave Angamos 0610,Casilla 1280, Antofagasta, Chile, Email: cesar.bonilla@ucn.cl;
Corporate Author Thesis
Publisher Springer Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1029-8479 ISBN Medium
Area Expedition Conference
Notes WOS:001007947500002 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 5561
Permanent link to this record
 

 
Author Fiza, N.; Khan Chowdhury, N.R.; Masud, M.
Title Investigating Lorentz Invariance Violation with the long baseline experiment P2O Type Journal Article
Year 2023 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.
Volume (down) 01 Issue 1 Pages 076 - 29pp
Keywords Neutrino Mixing; Non-Standard Neutrino Properties
Abstract One of the basic propositions of quantum field theory is Lorentz invariance. The spontaneous breaking of Lorentz symmetry at a high energy scale can be studied at low energy extensions like the Standard model in a model-independent way through effective field theory (EFT). The present and future Long-baseline neutrino experiments can give a scope to observe such a Planck-suppressed physics of Lorentz invariance violation (LIV). A proposed long baseline experiment, Protvino to ORCA (dubbed “P2O”) with a baseline of 2595 km, is expected to provide good sensitivities to unresolved issues, especially neutrino mass ordering. P2O can offer good statistics even with a moderate beam power and runtime, owing to the very large (similar to 6 Mt) detector volume at KM3NeT/ ORCA. Here we discuss in detail, how the individual LIV parameters affect neutrino oscillations at P2O and DUNE baselines at the level of probability and derive analytical expressions to understand interesting degeneracies and other features. We estimate increment Delta chi(2) sensitivities to the LIV parameters, analyzing their correlations among each other, and also with the standard oscillation parameters. We calculate these results for P2O alone and also carry out a combined analysis of P2O with DUNE. We point out crucial features in the sensitivity contours and explain them qualitatively with the help of the relevant probability expressions derived here. Finally we estimate constraints on the individual LIV parameters at 95% confidence level (C.L.) intervals stemming from the combined analysis of P2O and DUNE datasets, and highlight the improvement over the existing constraints. We also find out that the additional degeneracy induced by the LIV parameter a(ee) around -22 x 10(-23) GeV is lifted by the combined analysis at 95% C.L.
Address [Fiza, Nishat] IISER Mohali, Dept Phys Sci, Mohali 140306, Punjab, India, Email: ph15039@iisermohali.ac.in;
Corporate Author Thesis
Publisher Springer Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1029-8479 ISBN Medium
Area Expedition Conference
Notes WOS:000918348700001 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 5462
Permanent link to this record