|   | 
Details
   web
Records
Author Borexino Collaboration (Bellini, G. et al); Pena-Garay, C.
Title Final results of Borexino Phase-I on low-energy solar neutrino spectroscopy Type Journal Article
Year 2014 Publication Physical Review D Abbreviated Journal Phys. Rev. D
Volume (down) 89 Issue 11 Pages 112007 - 68pp
Keywords
Abstract Borexino has been running since May 2007 at the Laboratori Nazionali del Gran Sasso laboratory in Italy with the primary goal of detecting solar neutrinos. The detector a large unsegmented liquid scintillator calorimeter characterized by unprecedented low levels of intrinsic radioactivity is optimized for the study of the lower energy part of the spectrum. During Phase-I (2007-2010) Borexino first detected and then precisely measured the flux of the Be-7 solar neutrinos ruled out any significant day-night asymmetry of their interaction rate made the first direct observation of the pep neutrinos and set the tightest upper limit on the flux of solar neutrinos produced in the CNO cycle (carbon nitrogen oxigen) where carbon nitrogen and oxygen serve as catalysts in the fusion process. In this paper we discuss the signal signature and provide a comprehensive description of the backgrounds quantify their event rates describe the methods for their identification selection or subtraction and describe data analysis. Key features are an extensive in situ calibration program using radioactive sources the detailed modeling of the detector response the ability to define an innermost fiducial volume with extremely low background via software cuts and the excellent pulse-shape discrimination capability of the scintillator that allows particle identification. We report a measurement of the annual modulation of the Be-7 neutrino interaction rate. The period the amplitude and the phase of the observed modulation are consistent with the solar origin of these events and the absence of their annual modulation is rejected with higher than 99% C.L. The physics implications of Phase-I results in the context of the neutrino oscillation physics and solar models are presented.
Address [Bellini, G.; Avanzini, M. Buizza; Caccianiga, B.; D'Angelo, D.; Giammarchi, M.; Lombardi, P.; Ludhova, L.; Meroni, E.; Miramonti, L.; Ranucci, G.; Re, A.] Univ Milan, Dipartimento Fis, I-20133 Milan, Italy
Corporate Author Thesis
Publisher Amer Physical Soc Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1550-7998 ISBN Medium
Area Expedition Conference
Notes WOS:000338663100002 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 1856
Permanent link to this record
 

 
Author Serenelli, A.; Pena-Garay, C.; Haxton, W.C.
Title Using the standard solar model to constrain solar composition and nuclear reaction S factors Type Journal Article
Year 2013 Publication Physical Review D Abbreviated Journal Phys. Rev. D
Volume (down) 87 Issue 4 Pages 043001 - 9pp
Keywords
Abstract While standard solar model (SSM) predictions depend on approximately 20 input parameters, SSM neutrino flux predictions are strongly correlated with a single model output parameter, the core temperature T-c. Consequently, one can extract physics from solar neutrino flux measurements while minimizing the consequences of SSM uncertainties, by studying flux ratios with appropriate power-law weightings tuned to cancel this T-c dependence. We reexamine an idea for constraining the primordial C + N content of the solar core from a ratio of CN-cycle O-15 to pp-chain B-8 neutrino fluxes, showing that non-nuclear SSM uncertainties in the ratio are small and effectively governed by a single parameter, the diffusion coefficient. We point out that measurements of both CN-I cycle neutrino branches-O-15 and N-13 beta-decay-could, in principle, lead to separate determinations of the core C and N abundances, due to out-of-equilibrium CN-cycle burning in the cooler outer layers of the solar core. Finally, we show that the strategy of constructing “minimum uncertainty” neutrino flux ratios can also test other properties of the SSM. In particular, we demonstrate that a weighted ratio of Be-7 and B-8 fluxes constrains a product of S-factors to the same precision currently possible with laboratory data.
Address [Serenelli, Aldo] CSIC IEEC, Inst Ciencias Espacio, Fac Ciencies, Bellaterra 08193, Spain, Email: aldos@ice.csic.es;
Corporate Author Thesis
Publisher Amer Physical Soc Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1550-7998 ISBN Medium
Area Expedition Conference
Notes WOS:000314685400001 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 1328
Permanent link to this record
 

 
Author Simpson, F.; Jimenez, R.; Pena-Garay, C.; Verde, L.
Title Dark energy from the motions of neutrinos Type Journal Article
Year 2018 Publication Physics of the Dark Universe Abbreviated Journal Phys. Dark Universe
Volume (down) 20 Issue Pages 72-77
Keywords Neutrinos; Dark energy; Interactions in the dark sector
Abstract Ordinarily, a scalar field may only play the role of dark energy if it possesses a potential that is either extraordinarily flat or extremely fine-tuned. Here we demonstrate that these restrictions are lifted when the scalar field undergoes persistent energy exchange with another fluid. In this scenario, the field is prevented from reversing its direction of motion, and instead may come to rest while displaced from the local minimum of its potential. Therefore almost any scalar potential is capable of initiating a prolonged phase of cosmic acceleration. If the rate of energy transfer is modulated via a derivative coupling, the field undergoes a rapid process of freezing, after which the field's equation of state mimicks that of a cosmological constant. We present a physically motivated realisation in the form of a neutrino-majoron coupling, which avoids the dynamical instabilities associated with mass-varying neutrino models. Finally we discuss possible means by which this model could be experimentally verified.
Address [Simpson, Fergus; Jimenez, Raul; Verde, Licia] Univ Barcelona, UB IEEC, ICC, Marti i Franques 1, E-08028 Barcelona 08028, Spain, Email: feigus2@icc.ub.edu;
Corporate Author Thesis
Publisher Elsevier Science Bv Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2212-6864 ISBN Medium
Area Expedition Conference
Notes WOS:000433904300009 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 3599
Permanent link to this record
 

 
Author Pena-Garay, C.; Verde, L.; Jimenez, R.
Title Neutrino footprint in large scale structure Type Journal Article
Year 2017 Publication Physics of the Dark Universe Abbreviated Journal Phys. Dark Universe
Volume (down) 15 Issue Pages 31-34
Keywords Cosmology; Neutrinos; Large scale structure
Abstract Recent constrains on the sum of neutrino masses inferred by analyzing cosmological data, show that detecting a non-zero neutrino mass is within reach of forthcoming cosmological surveys. Such a measurement will imply a direct determination of the absolute neutrino mass scale. Physically, the measurement relies on constraining the shape of the matter power spectrum below the neutrino free streaming scale: massive neutrinos erase power at these scales. However, detection of a lack of small-scale power from cosmological data could also be due to a host of other effects. It is therefore of paramount importance to validate neutrinos as the source of power suppression at small scales. We show that, independent on hierarchy, neutrinos always show a footprint on large, linear scales; the exact location and properties are fully specified by the measured power suppression (an astrophysical measurement) and atmospheric neutrinos mass splitting (a neutrino oscillation experiment measurement). This feature cannot be easily mimicked by systematic uncertainties in the cosmological data analysis or modifications in the cosmological model. Therefore the measurement of such a feature, up to 1% relative change in the power spectrum for extreme differences in the mass eigenstates mass ratios, is a smoking gun for confirming the determination of the absolute neutrino mass scale from cosmological observations. It also demonstrates the synergy between astrophysics and particle physics experiments.
Address [Verde, Licia; Jimenez, Raul] Univ Barcelona, ICREA, Marti & Franques 1, E-08028 Barcelona, Spain, Email: liciaverde@gmail.com
Corporate Author Thesis
Publisher Elsevier Science Bv Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2212-6864 ISBN Medium
Area Expedition Conference
Notes WOS:000401825700003 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 3138
Permanent link to this record
 

 
Author Girones, Z.; Marchetti, A.; Mena, O.; Pena-Garay, C.; Rius, N.
Title Cosmological data analysis of f(R) gravity models Type Journal Article
Year 2010 Publication Journal of Cosmology and Astroparticle Physics Abbreviated Journal J. Cosmol. Astropart. Phys.
Volume (down) 11 Issue 11 Pages 004 - 18pp
Keywords modified gravity; cosmological parameters from LSS
Abstract A class of well-behaved modified gravity models with long enough matter domination epoch and a late-time accelerated expansion is confronted with SNIa, CMB, SDSS, BAO and H(z) galaxy ages data, as well as current measurements of the linear growth of structure. We show that the combination of geometrical probes and growth data exploited here allows to rule out f(R) gravity models, in particular, the logarithmic of curvature model. We also apply solar system tests to the models in agreement with the cosmological data. We find that the exponential of the inverse of the curvature model satisfies all the observational tests considered and we derive the allowed range of parameters. Current data still allows for small deviations of Einstein gravity. Future, high precision growth data, in combination with expansion history data, will be able to distinguish tiny modifications of standard gravity from the Lambda CDM model.
Address [Girones, Z.; Marchetti, A.; Mena, O.; Pena-Garay, C.; Rius, N.] Univ Valencia, CSIC, IFIC, Dept Fis Teor, Valencia 46071, Spain, Email: girones@ific.uv.es
Corporate Author Thesis
Publisher Iop Publishing Ltd Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1475-7516 ISBN Medium
Area Expedition Conference
Notes ISI:000284825100004 Approved no
Is ISI yes International Collaboration no
Call Number IFIC @ elepoucu @ Serial 315
Permanent link to this record
 

 
Author Perez-Perez, J.; Amare, J.C.; Bandac, I.C.; Bayo, A.; Borjabad-Sanchez, S.; Calvo-Mozota, J.M.; Cid-Barrio, L.; Hernandez-Antolin, R.; Hernandez-Molinero, B.; Novella, P.; Pelczar, K.; Pena-Garay, C.; Romeo, B.; Ortiz de Solorzano, A.; Sorel, M.; Torrent, J.; Uson, A.; Wojna-Pelczar, A.; Zuzel, G.
Title Radon Mitigation Applications at the Laboratorio Subterráneo de Canfranc (LSC) Type Journal Article
Year 2022 Publication Universe Abbreviated Journal Universe
Volume (down) 8 Issue 2 Pages 112 - 20pp
Keywords radon; neutrinos; HPGe-detector; LSC
Abstract The Laboratorio Subterraneo de Canfranc (LSC) is the Spanish national hub for low radioactivity techniques and the associated scientific and technological applications. The concentration of the airborne radon is a major component of the radioactive budget in the neighborhood of the detectors. The LSC hosts a Radon Abatement System, which delivers a radon suppressed air with 1.1 & PLUSMN;0.2 mBq/m(3) of Rn-222. The radon content in the air is continuously monitored with an Electrostatic Radon Monitor. Measurements with the double beta decay demonstrators NEXT-NEW and CROSS and the gamma HPGe detectors show the important reduction of the radioactive background due to the purified air in the vicinity of the detectors. We also discuss the use of this facility in the LSC current program which includes NEXT-100, low background biology experiments and radiopure copper electroformation equipment placed in the radon-free clean room.
Address [Perez-Perez, Javier; Bandac, Iulian Catalin; Bayo, Alberto; Borjabad-Sanchez, Silvia; Calvo-Mozota, Jose Maria; Cid-Barrio, Laura; Hernandez-Antolin, Rebecca; Hernandez-Molinero, Beatriz; Pena-Garay, Carlos; Romeo, Beatriz] Lab Subterraneo Canfranc LSC, Canfranc Estn 22880, Spain, Email: javier.perez.perez@uj.edu.pl;
Corporate Author Thesis
Publisher Mdpi Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes WOS:000762509500001 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 5143
Permanent link to this record
 

 
Author Villaescusa-Navarro, F.; Miralda-Escude, J.; Pena-Garay, C.; Quilis, V.
Title Neutrino halos in clusters of galaxies and their weak lensing signature Type Journal Article
Year 2011 Publication Journal of Cosmology and Astroparticle Physics Abbreviated Journal J. Cosmol. Astropart. Phys.
Volume (down) 06 Issue 6 Pages 027 - 14pp
Keywords cosmological neutrinos; gravitational lensing; galaxy clusters
Abstract We study whether non-linear gravitational effects of relic neutrinos on the development of clustering and large-scale structure may be observable by weak gravitational lensing. We compute the density profile of relic massive neutrinos in a spherical model of a cluster of galaxies, for several neutrino mass schemes and cluster masses. Relic neutrinos add a small perturbation to the mass profile, making it more extended in the outer parts. In principle, this non-linear neutrino perturbation is detectable in an all-sky weak lensing survey such as EUCLID by averaging the shear profile of a large fraction of the visible massive clusters in the universe, or from its signature in the general weak lensing power spectrum or its cross-spectrum with galaxies. However, correctly modeling the distribution of mass in baryons and cold dark matter and suppressing any systematic errors to the accuracy required for detecting this neutrino perturbation is severely challenging.
Address [Villaescusa-Navarro, Francisco] Univ Valencia, CSIC, IFIC, E-46071 Valencia, Spain, Email: villa@ific.uv.es
Corporate Author Thesis
Publisher Iop Publishing Ltd Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1475-7516 ISBN Medium
Area Expedition Conference
Notes ISI:000292332400027 Approved no
Is ISI yes International Collaboration no
Call Number IFIC @ elepoucu @ Serial 677
Permanent link to this record
 

 
Author Jimenez, R.; Kitching, T.; Pena-Garay, C.; Verde, L.
Title Can we measure the neutrino mass hierarchy in the sky? Type Journal Article
Year 2010 Publication Journal of Cosmology and Astroparticle Physics Abbreviated Journal J. Cosmol. Astropart. Phys.
Volume (down) 05 Issue 5 Pages 035 - 14pp
Keywords cosmological neutrinos; neutrino masses from cosmology; power spectrum; gravitational lensing
Abstract Cosmological probes are steadily reducing the total neutrino mass window, resulting in constraints on the neutrino-mass degeneracy as the most significant outcome. In this work we explore the discovery potential of cosmological probes to constrain the neutrino hierarchy, and point out some subtleties that could yield spurious claims of detection. This has an important implication for next generation of double beta decay experiments, that will be able to achieve a positive signal in the case of degenerate or inverted hierarchy of Majorana neutrinos. We find that cosmological experiments that nearly cover the whole sky could in principle distinguish the neutrino hierarchy by yielding 'substantial' evidence for one scenario over the another, via precise measurements of the shape of the matter power spectrum from large scale structure and weak gravitational lensing.
Address [Jimenez, Raul; Verde, Licia] Univ Barcelona, ICREA, E-08028 Barcelona, Spain, Email: raul.jimenez@icc.ub.edu
Corporate Author Thesis
Publisher Iop Publishing Ltd Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1475-7516 ISBN Medium
Area Expedition Conference
Notes ISI:000279490800005 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ elepoucu @ Serial 418
Permanent link to this record
 

 
Author Dorado-Morales, P.; Vilanova, C.; Pena-Garay, C.; Marti, J.M.; Porcar, M.
Title Unveiling Bacterial Interactions through Multidimensional Scaling and Dynamics Modeling Type Journal Article
Year 2015 Publication Scientific Reports Abbreviated Journal Sci Rep
Volume (down) 5 Issue Pages 18396 - 6pp
Keywords
Abstract We propose a new strategy to identify and visualize bacterial consortia by conducting replicated culturing of environmental samples coupled with high-throughput sequencing and multidimensional scaling analysis, followed by identification of bacteria-bacteria correlations and interactions. We conducted a proof of concept assay with pine-tree resin-based media in ten replicates, which allowed detecting and visualizing dynamical bacterial associations in the form of statistically significant and yet biologically relevant bacterial consortia.
Address [Dorado-Morales, Pedro; Vilanova, Cristina; Porcar, Manuel] Univ Valencia, Cavanilles Inst Biodivers & Evolutionary Biol, Valencia 46020, Spain, Email: manuel.porcar@uv.es
Corporate Author Thesis
Publisher Nature Publishing Group Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2045-2322 ISBN Medium
Area Expedition Conference
Notes WOS:000366483800002 Approved no
Is ISI yes International Collaboration no
Call Number IFIC @ pastor @ Serial 2483
Permanent link to this record
 

 
Author Bustamante, M.; Gago, A.M.; Pena-Garay, C.
Title Energy-independent new physics in the flavour ratios of high-energy astrophysical neutrinos Type Journal Article
Year 2010 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.
Volume (down) 04 Issue 4 Pages 066 - 28pp
Keywords Beyond Standard Model; Neutrino Physics; Discrete and Finite Symmetries
Abstract We have studied the consequences of breaking the CPT symmetry in the neutrino sector, using the expected high-energy neutrino flux from distant cosmological sources such as active galaxies. For this purpose we have assumed three different hypotheses for the neutrino production model, characterised by the flavour fluxes at production phi(0)(e) : phi(0)(mu) : phi(0)(tau) = 1 : 2 : 0, 0 : 1 : 0, and 1 : 0 : 0, and studied the theoretical and experimental expectations for the muon-neutrino flux at Earth, phi(mu), and for the flavour ratios at Earth, R = phi(mu)/phi(e) and S = phi(tau)/phi(mu). CPT violation (CPTV) has been implemented by adding an energy-independent term to the standard neutrino oscillation Hamiltonian. This introduces three new mixing angles, two new eigenvalues and three new phases, all of which have currently unknown values. We have varied the new mixing angles and eigenvalues within certain bounds, together with the parameters associated to pure standard oscillations. Our results indicate that, for the models 1 : 2 : 0 and 0 : 1 : 0, it might be possible to find large deviations of phi(mu), R, and S between the cases without and with CPTV, provided the CPTV eigenvalues lie within 10(-29) – 10(-27) GeV, or above. Moreover, if CPTV exists, there are certain values of R and S that can be accounted for by up to three production models. If no CPTV were observed, we could set limits on the CPTV eigenvalues of the same order. Detection prospects calculated using IceCube suggest that for the models 1 : 2 : 0 and 0 : 1 : 0, the modifications due to CPTV are larger and more clearly separable from the standard-oscillations predictions. We conclude that IceCube is potentially able to detect CPTV but that, depending on the values of the CPTV parameters, there could be a mis-determination of the neutrino production model.
Address [Bustamante, M.; Gago, A. M.] Univ Catolica Peru, Secc Fis, Dept Ciencias, Lima, Peru, Email: mbustamante@pucp.edu.pe
Corporate Author Thesis
Publisher Springer Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1126-6708 ISBN Medium
Area Expedition Conference
Notes ISI:000277473100004 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ elepoucu @ Serial 455
Permanent link to this record