toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Olmo, G.J.; Rubiera-Garcia, D. url  doi
openurl 
  Title Some recent results on Ricci-based gravity theories Type Journal Article
  Year 2022 Publication International Journal of Modern Physics D Abbreviated Journal Int. J. Mod. Phys. D  
  Volume (down) 31 Issue Pages 2240012 - 15pp  
  Keywords Metric-affine gravity; scalar fields; stellar models; junction conditions; compact objects  
  Abstract In this paper, metric-afline theories in which the gravity Lagrangian is built using (projectively invariant) contractions of the Ricci tensor with itself and with the metric (Ricci-based gravity theories, or RBGs for short) are reviewed. The goal is to provide a contextualized and coherent presentation of some recent results. In particular, we focus on the correspondence that exists between the field equations of these theories and those of general relativity, and comment on how this can be used to build new solutions of physical interest. We also discuss the formalism of junction conditions in the f (R) case, and provide a brief summary on current experimental and observational bounds on model parameters.  
  Address [Olmo, Gonzalo J.] Univ Valencia, CSIC, Ctr Mixto, Dept Fis Teor, Valencia 46100, Spain, Email: gonzalo.olmo@uv.es;  
  Corporate Author Thesis  
  Publisher World Scientific Publ Co Pte Ltd Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0218-2718 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000848888900001 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 5350  
Permanent link to this record
 

 
Author Agullo, I.; del Rio, A.; Navarro-Salas, J. url  doi
openurl 
  Title Gravity and handedness of photons Type Journal Article
  Year 2017 Publication International Journal of Modern Physics D Abbreviated Journal Int. J. Mod. Phys. D  
  Volume (down) 26 Issue 12 Pages 1742001 - 5pp  
  Keywords Quantum fields in curved spacetime; symmetry and conservation laws; electromagnetic wave propagation; anomalies  
  Abstract Vacuum fluctuations of quantum fields are altered in the presence of a strong gravitational background, with important physical consequences. We argue that a nontrivial spacetime geometry can act as an optically active medium for quantum electromagnetic radiation, in such a way that the state of polarization of radiation changes in time, even in the absence of electromagnetic sources. This is a quantum effect, and is a consequence of an anomaly related to the classical invariance under electric-magnetic duality rotations in Maxwell theory.  
  Address [Agullo, Ivan] Louisiana State Univ, Dept Phys & Astron, Baton Rouge, LA 70803 USA, Email: agullo@lsu.edu;  
  Corporate Author Thesis  
  Publisher World Scientific Publ Co Pte Ltd Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0218-2718 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000414411900003 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 3355  
Permanent link to this record
 

 
Author Olmo, G.J.; Rubiera-Garcia, D. url  doi
openurl 
  Title The quantum, the geon and the crystal Type Journal Article
  Year 2015 Publication International Journal of Modern Physics D Abbreviated Journal Int. J. Mod. Phys. D  
  Volume (down) 24 Issue 9 Pages 1542013 - 15pp  
  Keywords Effective geometries; crystalline structures; modified gravity; metric-affine approach; geons  
  Abstract Effective geometries arising from a hypothetical discrete structure of spacetime can play an important role in the understanding of the gravitational physics beyond General Relativity (GR). To discuss this question, we make use of lessons from crystalline systems within solid state physics, where the presence of defects in the discrete microstructure of the crystal determine the kind of effective geometry needed to properly describe the system in the macroscopic continuum limit. In this work, we study metric-affine theories with nonmetricity and torsion, which are the gravitational analog of crystalline structures with point defects and dislocations. We consider a crystal-motivated gravitational action and show the presence of topologically nontrivial structures (wormholes) supported by an electromagnetic field. Their existence has important implications for the quantum foam picture and the effective gravitational geometries. We discuss how the dialogue between solid state physics systems and modified gravitational theories can provide useful insights on both sides.  
  Address [Olmo, Gonzalo J.] Univ Valencia, CSIC, Fac Fis, Dept Fis Teor, E-46100 Valencia, Spain, Email: drubiera@fudan.edu.cn  
  Corporate Author Thesis  
  Publisher World Scientific Publ Co Pte Ltd Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0218-2718 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000358793200014 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 2322  
Permanent link to this record
 

 
Author Capozziello, S.; Harko, T.; Lobo, F.S.N.; Olmo, G.J. url  doi
openurl 
  Title Hybrid Modified Gravity Unifying Local Tests, Galactic Dynamics and Late-Time Cosmic Acceleration Type Journal Article
  Year 2013 Publication International Journal of Modern Physics D Abbreviated Journal Int. J. Mod. Phys. D  
  Volume (down) 22 Issue 12 Pages 1342006 - 7pp  
  Keywords Modified gravity; late-time cosmic acceleration; dark matter; solar system tests  
  Abstract The nonequivalence between the metric and Palatini formalisms of f(R) gravity is an intriguing feature of these theories. However, in the recently proposed hybrid metric-Palatini gravity, consisting of the superposition of the metric Einstein-Hilbert Lagrangian with an f(R) term constructed a la Palatini, the “true” gravitational field is described by the interpolation of these two nonequivalent approaches. The theory predicts the existence of a light long-range scalar field, which passes the local constraints and affects the galactic and cosmological dynamics. Thus, the theory opens new possibilities for a unified approach, in the same theoretical framework, to the problems of dark energy and dark matter, without distinguishing a priori matter and geometric sources, but taking their dynamics into account under the same standard.  
  Address [Capozziello, Salvatore] Univ Naples Federico II, Dipartimento Fis, I-80126 Naples, Italy, Email: capozzie@na.infn.it;  
  Corporate Author Thesis  
  Publisher World Scientific Publ Co Pte Ltd Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0218-2718 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000329048900013 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 1688  
Permanent link to this record
 

 
Author Olmo, G.J.; Rubiera-Garcia, D. url  doi
openurl 
  Title Nonsingular Charged Black Holes A La Palatini Type Journal Article
  Year 2012 Publication International Journal of Modern Physics D Abbreviated Journal Int. J. Mod. Phys. D  
  Volume (down) 21 Issue 8 Pages 1250067 - 6pp  
  Keywords Extended theories of gravity; Palatini formalism; Planck scale  
  Abstract We argue that the quantum nature of matter and gravity should lead to a discretization of the allowed states of the matter confined in the interior of black holes. To support and illustrate this idea, we consider a quadratic extension of general relativity (GR) formulated a la Palatini and show that nonrotating, electrically charged black holes develop a compact core at the Planck density which is nonsingular if the mass spectrum satisfies a certain discreteness condition. We also find that the area of the core is proportional to the number of charges times the Planck area.  
  Address [Olmo, Gonzalo J.] Univ Valencia, CSIC, Dept Fis Teor, Fac Fis, E-46100 Valencia, Spain  
  Corporate Author Thesis  
  Publisher World Scientific Publ Co Pte Ltd Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0218-2718 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000308497500002 Approved no  
  Is ISI yes International Collaboration no  
  Call Number IFIC @ pastor @ Serial 1154  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records:
ific federMinisterio de Ciencia e InnovaciĆ³nAgencia Estatal de Investigaciongva