toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Balibrea-Correa, J.; Lerendegui-Marco, J.; Calvo, D.; Caballero, L.; Babiano, V.; Ladarescu, I.; Redondo, M.L.; Tain, J.L.; Tolosa, A.; Domingo-Pardo, C.; Calvino, F.; Casanovas, A.; Tarifeño-Saldivia, A.; Alcayne, V.; Cano-Ott, D.; Martinez, T.; Guerrero, C.; Barbagallo, M.; Macina, D.; Bacak, M. doi  openurl
  Title A first prototype of C6D6 total-energy detector with SiPM readout for neutron capture time-of-flight experiments Type Journal Article
  Year 2021 Publication Nuclear Instruments & Methods in Physics Research A Abbreviated Journal Nucl. Instrum. Methods Phys. Res. A  
  Volume (down) 985 Issue Pages 164709 - 8pp  
  Keywords Silicon photomultiplier; Radiation detectors; Time-of-flight; Radiative capture; Total energy detector; Pulse-height weighting technique  
  Abstract Low efficiency total-energy detectors (TEDs) are one of the main tools for neutron capture cross section measurements utilizing the time-of-flight (TOF) technique. State-of-the-art TEDs are based on a C6D6 liquid-scintillation cell optically coupled to a fast photomultiplier tube. The large photomultiplier tube represents yet a significant contribution to the so-called neutron sensitivity background, which is one of the most conspicuous sources of uncertainty in this type of experiments. Here we report on the development of a first prototype of a TED based on a silicon-photomultiplier (SiPM) readout, thus resulting in a lightweight and much more compact detector. Apart from the envisaged improvement in neutron sensitivity, the new system uses low voltage (+28 V) and low current supply (-50 mA), which is more practical than the-kV supply required by conventional photomultipliers. One important difficulty hindering the earlier implementation of SiPM readout for this type of detector was the large capacitance for the output signal when all pixels of a SiPM array are summed together. The latter leads to long pulse rise and decay times, which are not suitable for time-of-flight experiments. In this work we demonstrate the feasibility of a Schottky-diode multiplexing readout approach, that allows one to preserve the excellent timing properties of SiPMs, hereby paving the way for their implementation in future neutron TOF experiments.  
  Address [Balibrea-Correa, J.; Lerendegui-Marco, J.; Calvo, D.; Caballero, L.; Babiano, V; Ladarescu, I; Redondo, M. Lopez; Tain, J. L.; Tolosa, A.; Domingo-Pardo, C.] Univ Valencia, Inst Fis Corpuscular, CSIC, Valencia, Spain, Email: dacaldia@ific.uv.es;  
  Corporate Author Thesis  
  Publisher Elsevier Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0168-9002 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000592358200019 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 4638  
Permanent link to this record
 

 
Author NEXT Collaboration (Trindade, A.M.F. et al); Alvarez, V.; Benlloch-Rodriguez, J.M.; Botas, A.; Carcel, S.; Carrion, J.V.; Diaz, J.; Felkai, R.; Ferrario, P.; Gomez-Cadenas, J.J.; Laing, A.; Liubarsky, I; Lopez-March, N.; Martinez, A.; Muñoz Vidal, J.; Musti, M.; Nebot-Guinot, M.; Novella, P.; Palmeiro, B.; Perez, J.; Querol, M.; Renner, J.; Rodriguez, J.; Simon, A.; Sorel, M.; Torrent, J.; Yahlali, N. doi  openurl
  Title Study of the loss of xenon scintillation in xenon-trimethylamine mixtures Type Journal Article
  Year 2018 Publication Nuclear Instruments & Methods in Physics Research A Abbreviated Journal Nucl. Instrum. Methods Phys. Res. A  
  Volume (down) 905 Issue Pages 22-28  
  Keywords Gaseous radiation detectors; Noble gas mixtures; Molecular additives; VUV absorption  
  Abstract This work investigates the capability of TMA ((CH3)(3)N) molecules to shift the wavelength of Xe VUV emission (160-188 nm) to a longer, more manageable, wavelength (260-350 nm). Light emitted from a Xe lamp was passed through a gas chamber filled with Xe-TMA mixtures at 800 Torr and detected with a photomultiplier tube. Using bandpass filters in the proper transmission ranges, no reemitted light was observed experimentally. Considering the detection limit of the experimental system, if reemission by TMA molecules occurs, it is below 0.3% of the scintillation absorbed in the 160-188 nm range. An absorption coefficient value for xenon VUV light by TMA of 0.43 +/- 0.03 cm(-1) Torr(-1) was also obtained. These results can be especially important for experiments considering TMA as a molecular additive to Xe in large volume optical time projection chambers.  
  Address [Trindade, A. M. F.; Escada, J.; Cortez, A. F., V; Borges, F. I. G. M.; Santos, F. P.; Conde, C. A. N.] LIP Lab Instrumentacao & Fis Expt Particulas, Coimbra, Portugal, Email: Kalexandre.trindade@coimbra.lip.pt  
  Corporate Author Thesis  
  Publisher Elsevier Science Bv Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0168-9002 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000444425700003 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 3730  
Permanent link to this record
 

 
Author Benitez, V. et al; Bernabeu, J.; Garcia, C.; Lacasta, C.; Marco, R.; Rodriguez, D.; Santoyo, D.; Solaz, C.; Soldevila, U. doi  openurl
  Title Sensors for the End-cap prototype of the Inner Tracker in the ATLAS Detector Upgrade Type Journal Article
  Year 2016 Publication Nuclear Instruments & Methods in Physics Research A Abbreviated Journal Nucl. Instrum. Methods Phys. Res. A  
  Volume (down) 833 Issue Pages 226-232  
  Keywords Silicon radiation detectors; Strip sensors; HL-LHC; ATLAS Upgrade; Inner Tracker (ITk); End-cap  
  Abstract The new silicon microstrip sensors of the End-cap part of the HL-LHC ATLAS Inner Tracker (ITk) present a number of challenges due to their complex design features such as the multiple different sensor shapes, the varying strip pitch, or the built-In stereo angle. In order to investigate these specific problems, the “petalet” prototype was defined as a small End-cap prototype. The sensors for the petalet prototype include several new layout and technological solutions to investigate the issues, they have been tested in detail by the collaboration. The sensor description and detailed test results are presented in this paper. New software tools have been developed for the automatic layout generation of the complex designs. The sensors have been fabricated, characterized and delivered to the institutes in the collaboration for their assembly on petalet prototypes. This paper describes the lessons learnt from the design and tests of the new solutions implemented on these sensors, which are being used for the full petal sensor development. This has resulted in the ITIc strip, community acquiring the necessary expertise to develop the full End-cap structure, the petal.  
  Address [Benitez, V.; Ullan, M.; Quirion, D.; Pellegrini, G.; Fleta, C.; Lozano, M.] CSIC, CNM, IMB, Campus Univ Bellaterra, Barcelona 08193, Spain, Email: miguel.ullan@imb-cnm.csic.es  
  Corporate Author Thesis  
  Publisher Elsevier Science Bv Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0168-9002 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000383818200032 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 2816  
Permanent link to this record
 

 
Author Ullan, M.; Benitez, V.; Quirion, D.; Zabala, M.; Pellegrini, G.; Lozano, M.; Lacasta, C.; Soldevila, U.; Garcia, C.; Fadeyev, V.; Wortman, J.; DeFilippis, J.; Shumko, M.; Grillo, A.A.; Sadrozinski, H.F.W. doi  openurl
  Title Low-resistance strip sensors for beam-loss event protection Type Journal Article
  Year 2014 Publication Nuclear Instruments & Methods in Physics Research A Abbreviated Journal Nucl. Instrum. Methods Phys. Res. A  
  Volume (down) 765 Issue Pages 252-257  
  Keywords Silicon radiation detectors; Strip sensors; Punch through protection; Beam loss; HL-LHC; ATLAS Upgrade  
  Abstract AC coupled silicon strip sensors can be damaged in case of a beam loss due to the possibility of a large charge accumulation in the bulk, developing very high voltages across the coupling capacitors which can destroy them. Punch-through structures are currently used to avoid this problem helping to evacuate the accumulated charge as large voltages are developing. Nevertheless, previous experiments, performed with laser pulses, have shown that these structures can become ineffective in relatively long strips. The large value of the implant resistance can effectively isolate the “far” end of the strip from the punchthrough structure leading to large voltages. We present here our developments to fabricate lowresistance strip sensors to avoid this problem. The deposition of a conducting material in contact with the implants drastically reduces the strip resistance, assuring the effectiveness of the punch-through structures. First devices have been fabricated with this new technology. Initial results with laser tests show the expected reduction in peak voltages on the low resistivity implants. Other aspects of the sensor performance, including the signal formation, are not affected by the new technology.  
  Address [Ullan, M.; Benitez, V.; Quirion, D.; Zabala, M.; Pellegrini, G.; Lozano, M.] CSIC, Ctr Nacl Microelect IMB CNM, Barcelona 08193, Spain, Email: Miguel.Ullan@imb-cnm.csic.es  
  Corporate Author Thesis  
  Publisher Elsevier Science Bv Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0168-9002 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000344621000048 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 2003  
Permanent link to this record
 

 
Author Miñano, M. doi  openurl
  Title Radiation Hard Silicon Strips Detectors for the SLHC Type Journal Article
  Year 2011 Publication IEEE Transactions on Nuclear Science Abbreviated Journal IEEE Trans. Nucl. Sci.  
  Volume (down) 58 Issue 3 Pages 1135-1140  
  Keywords High energy physics; microstrip; radiation detectors; silicon; SLHC  
  Abstract While the Large Hadron Collider (LHC) began taking data in 2009, scenarios for a machine upgrade to achieve a much higher luminosity are being developed. In the current planning, it is foreseen to increase the luminosity of the LHC at CERN around 2018. As radiation damage scales with integrated luminosity, the particle physics experiments will need to be equipped with a new generation of radiation hard detectors. This article reports on the status of the R&D projects on radiation hard silicon strips detectors for particle physics, linked to the Large Hadron Collider Upgrade, super-LHC (sLHC) of the ATLAS microstrip detector. The primary focus of this report is on measuring the radiation hardness of the silicon materials and the detectors under study. This involves designing silicon detectors, irradiating them to the sLHC radiation levels and studying their performance as particle detectors. The most promising silicon detector for the different radiation levels in the different regions of the ATLAS microstrip detector will be presented. Important challenges related to engineering layout, powering, cooling and reading out a very large strip detector are presented. Ideas on possible schemes for the layout and support mechanics will be shown.  
  Address IFIC UV CSIC, Inst Fis Corpuscular, E-46071 Valencia, Spain, Email: mercedes.minano@ific.uv.es  
  Corporate Author Thesis  
  Publisher Ieee-Inst Electrical Electronics Engineers Inc Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0018-9499 ISBN Medium  
  Area Expedition Conference  
  Notes ISI:000291659300001 Approved no  
  Is ISI yes International Collaboration no  
  Call Number IFIC @ pastor @ Serial 651  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records:
ific federMinisterio de Ciencia e InnovaciĆ³nAgencia Estatal de Investigaciongva