toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author de Putter, R.; Mena, O.; Giusarma, E.; Ho, S.; Cuesta, A.; Seo, H.J.; Ross, A.J.; White, M.; Bizyaev, D.; Brewington, H.; Kirkby, D.; Malanushenko, E.; Malanushenko, V.; Oravetz, D.; Pan, K.K.; Percival, W.J.; Ross, N.P.; Schneider, D.P.; Shelden, A.; Simmons, A.; Snedden, S. url  doi
openurl 
  Title New Neutrino Mass Bounds from SDSS-III Data Release 8 Photometric Luminous Galaxies Type Journal Article
  Year 2012 Publication Astrophysical Journal Abbreviated Journal Astrophys. J.  
  Volume (down) 761 Issue 1 Pages 12 - 12pp  
  Keywords cosmological parameters; cosmology: observations; large-scale structure of universe  
  Abstract We present neutrino mass bounds using 900,000 luminous galaxies with photometric redshifts measured from Sloan Digital Sky Survey III Data Release 8. The galaxies have photometric redshifts between z = 0.45 and z = 0.65 and cover 10,000 deg(2), thus probing a volume of 3 h(-3) Gpc(3) and enabling tight constraints to be derived on the amount of dark matter in the form of massive neutrinos. A new bound on the sum of neutrino masses Sigma m nu < 0.27 eV, at the 95% confidence level (CL), is obtained after combining our sample of galaxies, which we call “CMASS,” with Wilkinson Microwave Anisotropy Probe (WMAP) seven-year cosmic microwave background data and the most recent measurement of the Hubble parameter from the Hubble Space Telescope (HST). This constraint is obtained with a conservative multipole range of 30 < l < 200 in order to minimize nonlinearities, and a free bias parameter in each of the four redshift bins. We study the impact of assuming this linear galaxy bias model using mock catalogs and find that this model causes a small (similar to 1 sigma-1.5 sigma) bias in Omega(DM)h(2). For this reason, we also quote neutrino bounds based on a conservative galaxy bias model containing additional, shot-noise-like free parameters. In this conservative case, the bounds are significantly weakened, e. g., Sigma m(nu) < 0.38 eV (95% CL) for WMAP+HST+CMASS (l(max) = 200). We also study the dependence of the neutrino bound on the multipole range (l(max) = 150 versus l(max) = 200) and on which combination of data sets is included as a prior. The addition of supernova and/or baryon acoustic oscillation data does not significantly improve the neutrino mass bound once the HST prior is included. A companion paper describes the construction of the angular power spectra in detail and derives constraints on a general cosmological model, including the dark energy equation of state w and the spatial curvature Omega(K), while a second companion paper presents a measurement of the scale of baryon acoustic oscillations from the same data set. All three works are based on the catalog by Ross et al.  
  Address [de Putter, Roland] Univ Barcelona, ICC, IEEC UB, E-08028 Barcelona, Spain  
  Corporate Author Thesis  
  Publisher Iop Publishing Ltd Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0004-637x ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000311748800012 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 1262  
Permanent link to this record
 

 
Author Ho, S. et al; de Putter, R.; Mena, O. url  doi
openurl 
  Title Clustering of Sloan Digital Sky Survey III Photometric Luminous Galaxies: The Measurement, Systematics and Cosmological Implications Type Journal Article
  Year 2012 Publication Astrophysical Journal Abbreviated Journal Astrophys. J.  
  Volume (down) 761 Issue 1 Pages 14 - 24pp  
  Keywords cosmological parameters; dark energy; dark matter; distance scale  
  Abstract The Sloan Digital Sky Survey (SDSS) surveyed 14,555 deg(2), and delivered over a trillion pixels of imaging data. We present a study of galaxy clustering using 900,000 luminous galaxies with photometric redshifts, spanning between z = 0.45 and z = 0.65, constructed from the SDSS using methods described in Ross et al. This data set spans 11,000 deg(2) and probes a volume of 3 h(-3) Gpc(3), making it the largest volume ever used for galaxy clustering measurements. We describe in detail the construction of the survey window function and various systematics affecting our measurement. With such a large volume, high-precision cosmological constraints can be obtained given careful control and understanding of the observational systematics. We present a novel treatment of the observational systematics and its applications to the clustering signals from the data set. In this paper, we measure the angular clustering using an optimal quadratic estimator at four redshift slices with an accuracy of similar to 15%, with a bin size of delta(l) = 10 on scales of the baryon acoustic oscillations (BAOs; at l similar to 40-400). We also apply corrections to the power spectra due to systematics and derive cosmological constraints using the full shape of the power spectra. For a flat Lambda CDM model, when combined with cosmic microwave background Wilkinson Microwave Anisotropy Probe 7 (WMAP7) and H-0 constraints from using 600 Cepheids observed by Wide Field Camera 3 (WFC3; HST), we find Omega(Lambda) = 0.73 +/- 0.019 and H-0 to be 70.5 +/- 1.6 s(-1) Mpc(-1) km. For an open Lambda CDM model, when combined with WMAP7 + HST, we find Omega(K) = 0.0035 +/- 0.0054, improved over WMAP7+HST alone by 40%. For a wCDM model, when combined with WMAP7+HST+ SN, we find w = -1.071 +/- 0.078, and H-0 to be 71.3 +/- 1.7 s(-1) Mpc(-1) km, which is competitive with the latest large-scale structure constraints from large spectroscopic surveys such as the SDSS Data Release 7 (DR7) and WiggleZ. We also find that systematic-corrected power spectra give consistent constraints on cosmological models when compared with pre-systematic correction power spectra in the angular scales of interest. The SDSS-III Data Release 8 (SDSS-III DR8) Angular Clustering Data allow a wide range of investigations into the cosmological model, cosmic expansion (via BAO), Gaussianity of initial conditions, and neutrino masses. Here, we refer to our companion papers for further investigations using the clustering data. Our calculation of the survey selection function, systematics maps, and likelihood function for the COSMOMC package will be released at http://portal.nersc.gov/project/boss/galaxy/photoz/.  
  Address [Ho, Shirley; White, Martin; Schlegel, David J.; Seljak, Uros; Reid, Beth; Ross, Nicholas P.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA, Email: cwho@lbl.gov  
  Corporate Author Thesis  
  Publisher Iop Publishing Ltd Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0004-637x ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000311748800014 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 1263  
Permanent link to this record
 

 
Author Seo, H.J. et al; de Putter, R. url  doi
openurl 
  Title Acoustic scale from the angular power spectra of SDSS-III DR8 photometric luminous galaxies Type Journal Article
  Year 2012 Publication Astrophysical Journal Abbreviated Journal Astrophys. J.  
  Volume (down) 761 Issue 1 Pages 13 - 16pp  
  Keywords distance scale; cosmological parameters; cosmology: observations; large-scale structure of universe  
  Abstract We measure the acoustic scale from the angular power spectra of the Sloan Digital Sky Survey III (SDSS-III) Data Release 8 imaging catalog that includes 872, 921 galaxies over similar to 10,000 deg(2) between 0.45 < z < 0.65. The extensive spectroscopic training set of the Baryon Oscillation Spectroscopic Survey luminous galaxies allows precise estimates of the true redshift distributions of galaxies in our imaging catalog. Utilizing the redshift distribution information, we build templates and fit to the power spectra of the data, which are measured in our companion paper, to derive the location of Baryon acoustic oscillations (BAOs) while marginalizing over many free parameters to exclude nearly all of the non-BAO signal. We derive the ratio of the angular diameter distance to the sound horizon scale D-A(z)/r(s) = 9.212(-0.404)(+0.416) at z = 0.54, and therefore D-A(z) = 1411 +/- 65 Mpc at z = 0.54; the result is fairly independent of assumptions on the underlying cosmology. Our measurement of angular diameter distance D-A(z) is 1.4 sigma higher than what is expected for the concordance Lambda CDM, in accordance to the trend of other spectroscopic BAO measurements for z greater than or similar to 0.35. We report constraints on cosmological parameters from our measurement in combination with the WMAP7 data and the previous spectroscopic BAO measurements of SDSS and WiggleZ. We refer to our companion papers (Ho et al.; de Putter et al.) for investigations on information of the full power spectrum.  
  Address [Seo, Hee-Jong] Univ Calif Berkeley, LBL, Berkeley Ctr Cosmol Phys, Berkeley, CA 94720 USA  
  Corporate Author Thesis  
  Publisher Iop Publishing Ltd Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0004-637x ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000311748800013 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 1264  
Permanent link to this record
 

 
Author Reichardt, C.L.; de Putter, R.; Zahn, O.; Hou, Z. url  doi
openurl 
  Title New limits on early dark energy from the South Pole telescope Type Journal Article
  Year 2012 Publication Astrophysical Journal Letters Abbreviated Journal Astrophys. J. Lett.  
  Volume (down) 749 Issue 1 Pages L9 - 5pp  
  Keywords cosmic background radiation; dark energy; early universe  
  Abstract We present new limits on early dark energy (EDE) from the cosmic microwave background (CMB) using data from the Wilkinson Microwave Anisotropy Probe (WMAP) satellite on large angular scales and South Pole Telescope on small angular scales. We find a strong upper limit on the EDE density of Omega(e) < 0.018 at 95% confidence, a factor of three improvement over WMAP data alone. We show that adding lower-redshift probes of the expansion rate to the CMB data improves constraints on the dark energy equation of state, but not the EDE density. We also explain how small-scale CMB temperature anisotropy constrains EDE.  
  Address [Reichardt, C. L.; Zahn, O.] Univ Calif Berkeley, Dept Phys, Berkeley Ctr Cosmol Phys, Berkeley, CA 94720 USA, Email: cr@bolo.berkeley.edu  
  Corporate Author Thesis  
  Publisher Iop Publishing Ltd Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2041-8205 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000302143100009 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 962  
Permanent link to this record
 

 
Author Manera, M.; Scoccimarro, R.; Percival, W.J.; Samushia, L.; McBride, C.K.; Ross, A.J.; Sheth, R.K.; White, M.; Reid, B.A.; Sanchez, A.G.; de Putter, R.; Xu, X.Y.; Berlind, A.A.; Brinkmann, J.; Maraston, C.; Nichol, B.; Montesano, F.; Padmanabhan, N.; Skibba, R.A.; Tojeiro, R.; Weaver, B.A. url  doi
openurl 
  Title The clustering of galaxies in the SDSS-III Baryon Oscillation Spectroscopic Survey: a large sample of mock galaxy catalogues Type Journal Article
  Year 2013 Publication Monthly Notices of the Royal Astronomical Society Abbreviated Journal Mon. Not. Roy. Astron. Soc.  
  Volume (down) 428 Issue 2 Pages 1036-1054  
  Keywords galaxies: haloes; large-scale structure of Universe  
  Abstract We present a fast method for producing mock galaxy catalogues that can be used to compute the covariance of large-scale clustering measurements and test analysis techniques. Our method populates a second-order Lagrangian perturbation theory (2LPT) matter field, where we calibrate masses of dark matter haloes by detailed comparisons with N-body simulations. We demonstrate that the clustering of haloes is recovered at similar to 10 per cent accuracy. We populate haloes with mock galaxies using a halo occupation distribution (HOD) prescription, which has been calibrated to reproduce the clustering measurements on scales between 30 and 80 h(-1) Mpc. We compare the sample covariance matrix from our mocks with analytic estimates, and discuss differences. We have used this method to make catalogues corresponding to Data Release 9 of the Baryon Oscillation Spectroscopic Survey (BOSS), producing 600 mock catalogues of the 'CMASS' galaxy sample. These mocks have enabled detailed tests of methods and errors, and have formed an integral part of companion analyses of these galaxy data.  
  Address Univ Portsmouth, Inst Cosmol & Gravitat, Portsmouth PO1 3FX, Hants, England, Email: marc.manera@port.ac.uk  
  Corporate Author Thesis  
  Publisher Oxford Univ Press Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0035-8711 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000318229000007 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 1471  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records:
ific federMinisterio de Ciencia e InnovaciĆ³nAgencia Estatal de Investigaciongva