toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Vijande, J.; Tedgren, A.C.; Ballester, F.; Baltas, D.; Papagiannis, P.; Rivard, M.J.; Siebert, F.A.; De Werd, L.; Perez-Calatayud, J. doi  openurl
  Title Source strength determination in iridium-192 and cobalt-60 brachytherapy: A European survey on the level of agreement between clinical measurements and manufacturer certificates Type Journal Article
  Year 2021 Publication Physics and Imaging in Radiation Oncology Abbreviated Journal Phys. Imag. Radiat. Oncol.  
  Volume (up) 19 Issue Pages 108-111  
  Keywords RAKR; Calibration; HDR; PDR; Brachytherapy  
  Abstract Background and purpose: Brachytherapy treatment outcomes depend on the accuracy of the delivered dose distribution, which is proportional to the reference air-kerma rate (RAKR). Current societal recommendations require the medical physicist to compare the measured RAKR values to the manufacturer source calibration certificate. The purpose of this work was to report agreement observed in current clinical practice in the European Union. Materials and methods: A European survey was performed for high- and pulsed-dose-rate (HDR and PDR) highenergy sources (Ir-192 and Co-60), to quantify observed RAKR differences. Medical physicists at eighteen hospitals from eight European countries were contacted, providing 1,032 data points from 2001 to 2020. Results: Over the survey period, 77% of the Ir-192 measurements used a well chamber instead of the older Krieger phantom method. Mean differences with the manufacturer calibration certificate were 0.01% +/- 1.15% for Ir-192 and -0.1% +/- 1.3% for Co-60. Over 95% of RAKR measurements in the clinic were within 3% of the manufacturer calibration certificate. Conclusions: This study showed that the agreement level was generally better than that reflected in prior societal recommendations positing 5%. Future recommendations on high-energy HDR and PDR source calibrations in the clinic may consider tightened agreements levels.  
  Address [Vijande, Javier; Ballester, Facundo] Univ Valencia UV, Dept Fis Atom Mol & Nucl, Burjassot, Spain, Email: Javier.vijande@uv.es  
  Corporate Author Thesis  
  Publisher Elsevier Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000694711800017 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 4969  
Permanent link to this record
 

 
Author Ballester, F.; Granero, D.; Perez-Calatayud, J.; Venselaar, J.L.M.; Rivard, M.J. doi  openurl
  Title Study of encapsulated Tm-170 sources for their potential use in brachytherapy Type Journal Article
  Year 2010 Publication Medical Physics Abbreviated Journal Med. Phys.  
  Volume (up) 37 Issue 4 Pages 1629-1637  
  Keywords brachytherapy; cancer; dosimetry; prosthetics; radioisotopes; thulium  
  Abstract Methods: The authors have assumed a theoretical Tm-170 cylindrical source encapsulated with stainless steel and typical dimensions taken from the currently available HDR Ir-192 brachytherapy sources. The dose-rate distribution was calculated for this source using the GEANT4 Monte Carlo (MC) code considering both photon and electron Tm-170 spectra. The AAPM TG-43 U1 brachytherapy dosimetry parameters were derived. To study general properties of Tm-170 encapsulated sources, spherical sources encapsulated with stainless steel and platinum were also studied. Moreover, the influence of small variations in the active core and capsule dimensions on the dosimetric characteristics was assessed. Treatment times required for a Tm-170 source were compared to those for Ir-192 and Yb-169 for the same contained activity. Results: Due to the energetic beta spectrum and the large electron yield, the bremsstrahlung contribution to the dose was of the same order of magnitude as from the emitted gammas and characteristic x rays. Moreover, the electron spectrum contribution to the dose was significant up to 4 mm from the source center compared to the photon contribution. The dose-rate constant Lambda of the cylindrical source was 1.23 cGy h(-1) U-1. The behavior of the radial dose function showed promise for applications in brachytherapy. Due to the electron spectrum, the anisotropy was large for r < 6 mm. Variations in manufacturing tolerances did not significantly influence the final dosimetry data when expressed in cGy h(-1) U-1. For typical capsule dimensions, maximum reference dose rates of about 0.2, 10, and 2 Gy min(-1) would then be obtained for Tm-170, Ir-192, and Yb-169, respectively, resulting in treatment times greater than those for HDR Ir-192 brachytherapy. Conclusions: The dosimetric characteristics of source designs exploiting the low photon energy of Tm-170 were studied for potential application in HDR-brachytherapy. Dose-rate distributions were obtained for cylindrical and simplified spherical Tm-170 source designs (stainless steel and platinum capsule materials) using MC calculations. Despite the high activity of Tm-170, calculated treatment times were much longer than for Ir-192.  
  Address [Ballester, Facundo] Univ Valencia, Dept Atom Mol & Nucl Phys, E-46100 Burjassot, Spain, Email: fballest@uv.es  
  Corporate Author Thesis  
  Publisher Amer Assoc Physicists Medicine Amer Inst Physics Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0094-2405 ISBN Medium  
  Area Expedition Conference  
  Notes ISI:000276211200027 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ elepoucu @ Serial 478  
Permanent link to this record
 

 
Author Rivard, M.J.; Granero, D.; Perez-Calatayud, J.; Ballester, F. doi  openurl
  Title Influence of photon energy spectra from brachytherapy sources on Monte Carlo simulations of kerma and dose rates in water and air Type Journal Article
  Year 2010 Publication Medical Physics Abbreviated Journal Med. Phys.  
  Volume (up) 37 Issue 2 Pages 869-876  
  Keywords biomedical materials; brachytherapy; dosimetry; iodine; iridium; Monte Carlo methods; palladium; radioisotopes  
  Abstract Methods: For Ir-192, I-125, and Pd-103, the authors considered from two to five published spectra. Spherical sources approximating common brachytherapy sources were assessed. Kerma and dose results from GEANT4, MCNP5, and PENELOPE-2008 were compared for water and air. The dosimetric influence of Ir-192, I-125, and Pd-103 spectral choice was determined. Results: For the spectra considered, there were no statistically significant differences between kerma or dose results based on Monte Carlo code choice when using the same spectrum. Water-kerma differences of about 2%, 2%, and 0.7% were observed due to spectrum choice for Ir-192, I-125, and Pd-103, respectively (independent of radial distance), when accounting for photon yield per Bq. Similar differences were observed for air-kerma rate. However, their ratio (as used in the dose-rate constant) did not significantly change when the various photon spectra were selected because the differences compensated each other when dividing dose rate by air-kerma strength. Conclusions: Given the standardization of radionuclide data available from the National Nuclear Data Center (NNDC) and the rigorous infrastructure for performing and maintaining the data set evaluations, NNDC spectra are suggested for brachytherapy simulations in medical physics applications.  
  Address [Rivard, Mark J.] Tufts Univ, Sch Med, Dept Radiat Oncol, Boston, MA 02111 USA, Email: mrivard@tuftsmedicalcenter.org  
  Corporate Author Thesis  
  Publisher Amer Assoc Physicists Medicine Amer Inst Physics Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0094-2405 ISBN Medium  
  Area Expedition Conference  
  Notes ISI:000274075600048 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ elepoucu @ Serial 504  
Permanent link to this record
 

 
Author Granero, D.; Vijande, J.; Ballester, F.; Rivard, M.J. doi  openurl
  Title Dosimetry revisited for the HDR Ir-192 brachytherapy source model mHDR-v2 Type Journal Article
  Year 2011 Publication Medical Physics Abbreviated Journal Med. Phys.  
  Volume (up) 38 Issue 1 Pages 487-494  
  Keywords Ir-192; brachytherapy; dosimetry; TG-43; PSS model; MCNP5; PENELOPE2008; GEANT4  
  Abstract Purpose: Recently, the manufacturer of the HDR Ir-192 mHDR-v2 brachytherapy source reported small design changes (referred to herein as mHDR-v2r) that are within the manufacturing tolerances but may alter the existing dosimetric data for this source. This study aimed to (1) check whether these changes affect the existing dosimetric data published for this source; (2) obtain new dosimetric data in close proximity to the source, including the contributions from 192Ir electrons and considering the absence of electronic equilibrium; and (3) obtain scatter dose components for collapsed cone treatment planning system implementation. Methods: Three different Monte Carlo (MC) radiation transport codes were used: MCNP5, PENELOPE2008, and GEANT4. The source was centrally positioned in a 40 cm radius water phantom. Absorbed dose and collision kerma were obtained using 0.1 mm (0.5 mm) thick voxels to provide high-resolution dosimetry near (far from) the source. Dose-rate distributions obtained with the three MC codes were compared. Results: Simulations of mHDR-v2 and mHDR-v2r designs performed with three radiation transport codes showed agreement typically within 0.2% for r >= 0.25 cm. Dosimetric contributions from source electrons were significant for r<0.25 cm. The dose-rate constant and radial dose function were similar to those from previous MC studies of the mHDR-v2 design. The 2D anisotropy function also coincided with that of the mHDR-v2 design for r >= 0.25 cm. Detailed results of dose distributions and scatter components are presented for the modified source design. Conclusions: Comparison of these results to prior MC studies showed agreement typically within 0.5% for r >= 0.25 cm. If dosimetric data for r<0.25 cm are not needed, dosimetric results from the prior MC studies will be adequate. c 2011 American Association of Physicists in Medicine.  
  Address [Granero, Domingo] Hosp Gen Univ, Dept Radiat Phys, ERESA, E-46014 Valencia, Spain, Email: dgranero@eresa.com  
  Corporate Author Thesis  
  Publisher Amer Assoc Physicists Medicine Amer Inst Physics Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0094-2405 ISBN Medium  
  Area Expedition Conference  
  Notes ISI:000285769800050 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 557  
Permanent link to this record
 

 
Author Granero, D.; Perez-Calatayud, J.; Vijande, J.; Ballester, F.; Rivard, M.J. doi  openurl
  Title Limitations of the TG-43 formalism for skin high-dose-rate brachytherapy dose calculations Type Journal Article
  Year 2014 Publication Medical Physics Abbreviated Journal Med. Phys.  
  Volume (up) 41 Issue 2 Pages 021703 - 8pp  
  Keywords HDR; brachytherapy; skin; Monte Carlo; Geant4; Co-60; Ir-192; Yb-169  
  Abstract Purpose: In skin high-dose-rate (HDR) brachytherapy, sources are located outside, in contact with, or implanted at some depth below the skin surface. Most treatment planning systems use the TG-43 formalism, which is based on single-source dose superposition within an infinite water medium without accounting for the true geometry in which conditions for scattered radiation are altered by the presence of air. The purpose of this study is to evaluate the dosimetric limitations of the TG-43 formalism in HDR skin brachytherapy and the potential clinical impact. Methods: Dose rate distributions of typical configurations used in skin brachytherapy were obtained: a 5 cm x 5 cm superficial mould; a source inside a catheter located at the skin surface with and without backscatter bolus; and a typical interstitial implant consisting of an HDR source in a catheter located at a depth of 0.5 cm. Commercially available HDR Co-60 and Ir-192 sources and a hypothetical Yb-169 source were considered. The Geant4Monte Carlo radiation transport code was used to estimate dose rate distributions for the configurations considered. These results were then compared to those obtained with the TG-43 dose calculation formalism. In particular, the influence of adding bolus material over the implant was studied. Results: For a 5 cm x 5 cm Ir-192 superficial mould and 0.5 cm prescription depth, dose differences in comparison to the TG-43 method were about -3%. When the source was positioned at the skin surface, dose differences were smaller than -1% for Co-60 and Ir-192, yet -3% for Yb-169. For the interstitial implant, dose differences at the skin surface were -7% for Co-60, -0.6% for Ir-192, and -2.5% for Yb-169. Conclusions: This study indicates the following: (i) for the superficial mould, no bolus is needed; (ii) when the source is in contact with the skin surface, no bolus is needed for either Co-60 and Ir-192. For lower energy radionuclides like Yb-169, bolus may be needed; and (iii) for the interstitial case, at least a 0.1 cm bolus is advised for Co-60 to avoid underdosing superficial target layers. For Ir-192 and Yb-169, no bolus is needed. For those cases where no bolus is needed, its use might be detrimental as the lack of radiation scatter may be beneficial to the patient, although the 2% tolerance for dose calculation accuracy recommended in the AAPM TG-56 report is not fulfilled.  
  Address [Granero, Domingo] Hosp Gen Univ, ERESA, Dept Radiat Phys, Valencia 46014, Spain, Email: dgranero@eresa.com  
  Corporate Author Thesis  
  Publisher Amer Assoc Physicists Medicine Amer Inst Physics Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0094-2405 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000331213300006 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 1704  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records:
ific federMinisterio de Ciencia e InnovaciĆ³nAgencia Estatal de Investigaciongva