toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Real, D.; Calvo, D. doi  openurl
  Title Production requirements and functional tests of the KM3NeT Digital Optical Module Power Board Type Journal Article
  Year 2022 Publication Nuclear Instruments & Methods in Physics Research A Abbreviated Journal Nucl. Instrum. Methods Phys. Res. A  
  Volume (down) 1042 Issue Pages 167426 - 3pp  
  Keywords Power supply; Electronics reliability; Functional tests  
  Abstract The KM3NeT research facility is being built in the Mediterranean Sea. It consists of matrices of optical detectors, the so-called Digital Optical Module. Each of this elementary detector holds a set of 31 small-area photomultipliers, which detect the Cherenkov light generated by secondary particles produced in neutrino interactions. It includes also the acquisition electronics and the power board which supplies both, the acquisition electronics and the photomultipliers. The production of electronics boards needs to have a high quality and reliability level as it is going to be deployed for more than ten years without any maintenance possible. This work presents the requirements and the qualification tests being implemented in order to increase the reliability of the Power Board of the acquisition electronics of KM3NeT during the mass production. At the moment, more than one thousand board have been produced. Results on the production of the boards, including the production yield is presented. From the already produced boards, more than 350 have been already deployed and are operative in the detectors.  
  Address [Real, D.; Calvo, D.; KM3NeT Collaboration] Univ Valencia, IFIC Inst Fis Corpuscular, CSIC, C Catedrat Jose Beltran 2, Valencia 46980, Spain, Email: real@ific.uv.es  
  Corporate Author Thesis  
  Publisher Elsevier Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0168-9002 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000873950500001 Approved no  
  Is ISI yes International Collaboration no  
  Call Number IFIC @ pastor @ Serial 5403  
Permanent link to this record
 

 
Author KM3NeT Collaboration (Aiello, S. et al); Alves Garre, S.; Calvo, D.; Carretero, V.; Colomer, M.; Gozzini, S.R.; Hernandez-Rey, J.J.; Khan Chowdhury, N.R.; Lazo, A.; Palacios Gonzalez, J.; Pieterse, C.; Real, D.; Salesa Greus, F.; Sanchez Losa, A.; Zornoza, J.D.; Zuñiga, J. url  doi
openurl 
  Title Nanobeacon: A time calibration device for the KM3NeT neutrino telescope Type Journal Article
  Year 2022 Publication Nuclear Instruments & Methods in Physics Research A Abbreviated Journal Nucl. Instrum. Methods Phys. Res. A  
  Volume (down) 1040 Issue Pages 167132 - 13pp  
  Keywords Time calibration; Instrumentation; Neutrino telescopes  
  Abstract The KM3NeT Collaboration is currently constructing a multi-site high-energy neutrino telescope in the Mediterranean Sea consisting of matrices of pressure-resistant glass spheres, each holding a set of 31 small-area photomultipliers. The main goals of the telescope are the observation of neutrino sources in the Universe and the measurement of the neutrino oscillation parameters with atmospheric neutrinos. A relative time synchronisation between photomultipliers of the nanosecond order needed to guarantee the required angular resolution of the detector. Due to the large detector volumes to be instrumented by KM3NeT, a cost reduction of the different systems is a priority. To this end, the inexpensive Nanobeacon has been designed and developed by the KM3NeT Collaboration to be used for detector time-calibration studies. At present, more than 600 & nbsp;Nanobeacons have been already produced. The characterisation of the optical pulse and the wavelength emission profile of the devices is critical for the time calibration. The optical pulse rise time has been quantified as less than 3 ns, while the Full Width Half Maximum is less than 6 ns. The wavelength drift, due to a variation of the supply voltage, has also been qualified as lower than 10 nm for the full range of the Nanobeacon. In this paper, more details about the main features of the Nanobeacon design, production and operation, together with the main properties of the light pulse generated are described.  
  Address [Aiello, S.; Bruno, R.; Leonora, E.; Longhitano, F.; Randazzo, N.] Ist Nazl Fis Nucl, Sez Catania, Via Santa Sofia 64, I-95123 Catania, Italy, Email: sagreus@ific.uv.es;  
  Corporate Author Thesis  
  Publisher Elsevier Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0168-9002 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000841467100009 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 5342  
Permanent link to this record
 

 
Author ANTARES Collaboration (Albert, A. et al); Alves, S.; Calvo, D.; Carretero, V.; Gozzini, R.; Hernandez-Rey, J.J.; Lazo, A.; Manczak, J.; Real, D.; Sanchez-Losa, A.; Saina, A.; Salesa Greus, F.; Zornoza, J.D.; Zuñiga, J. url  doi
openurl 
  Title Searches for Neutrinos in the Direction of Radio-bright Blazars with the ANTARES Telescope Type Journal Article
  Year 2024 Publication Astrophysical Journal Abbreviated Journal Astrophys. J.  
  Volume (down) 964 Issue 1 Pages 3 - 13pp  
  Keywords  
  Abstract Active galaxies, especially blazars, are among the most promising extragalactic candidates for high-energy neutrino sources. To date, ANTARES searches included these objects and used GeV-TeV gamma-ray flux to select blazars. Here, a statistically complete blazar sample selected by their bright radio emission is used as the target for searches of origins of neutrinos collected by the ANTARES neutrino telescope over 13 yr of operation. The hypothesis of a neutrino-blazar directional correlation is tested by pair counting and a complementary likelihood-based approach. The resulting posttrial p-value is 3.0% (2.2 sigma in the two-sided convention). Additionally, a time-dependent analysis is performed to search for temporal clustering of neutrino candidates as a means of detecting neutrino flares in blazars. None of the investigated sources alone reaches a significant flare detection level. However, the presence of 18 sources with a pretrial significance above 3 sigma indicates a p = 1.4% (2.5 sigma in the two-sided convention) detection of a time-variable neutrino flux. An a posteriori investigation reveals an intriguing temporal coincidence of neutrino, radio, and gamma-ray flares of the J0242+1101 blazar at a p = 0.5% (2.9 sigma in the two-sided convention) level. Altogether, the results presented here suggest a possible connection of neutrino candidates detected by the ANTARES telescope with radio-bright blazars.  
  Address [Albert, A.; Drouhin, D.; Pradier, T.] Univ Strasbourg, CNRS, UMR 7178, IPHC, F-67000 Strasbourg, France, Email: julien.aublin@apc.in2p3.fr;  
  Corporate Author Thesis  
  Publisher IOP Publishing Ltd Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0004-637x ISBN Medium  
  Area Expedition Conference  
  Notes WOS:001183251300001 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 5996  
Permanent link to this record
 

 
Author AMON Team, ANTARES and HAWC Collaborations (Ayala Solares, H.A. et al); Alves Garres, S.; Calvo, D.; Carretero, V.; Gozzini, R.; Hernandez-Rey, J.J.; Manczak, J.; Pieterse, C.; Real, D.; Sanchez-Losa, A.; Zornoza, J. D.; Zuniga, J.; Salesa Greus, F. url  doi
openurl 
  Title Search for Gamma-Ray and Neutrino Coincidences Using HAWC and ANTARES Data Type Journal Article
  Year 2023 Publication Astrophysical Journal Abbreviated Journal Astrophys. J.  
  Volume (down) 944 Issue 2 Pages 166 - 9pp  
  Keywords  
  Abstract In the quest for high-energy neutrino sources, the Astrophysical Multimessenger Observatory Network has implemented a new search by combining data from the High Altitude Water Cherenkov (HAWC) Observatory and the Astronomy with a Neutrino Telescope and Abyss environmental RESearch (ANTARES) neutrino telescope. Using the same analysis strategy as in a previous detector combination of HAWC and IceCube data, we perform a search for coincidences in HAWC and ANTARES events that are below the threshold for sending public alerts in each individual detector. Data were collected between 2015 July and 2020 February with a live time of 4.39 yr. Over this time period, three coincident events with an estimated false-alarm rate of <1 coincidence per year were found. This number is consistent with background expectations.  
  Address [Solares, H. A. Ayala; Coutu, S.; Cowen, D.; Fox, D. B.; Gregoire, T.; Mostafa, M.; Murase, K.; Wissel, S.; Alonso, M. Fernandez; Whitaker, K.] Penn State Univ, Dept Phys, 104 Davey Lab, University Pk, PA 16802 USA, Email: hgayala@psu.edu  
  Corporate Author Thesis  
  Publisher IOP Publishing Ltd Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0004-637x ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000989686100001 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 5566  
Permanent link to this record
 

 
Author ANTARES, IceCube, Pierre Auger and Telescope Array Collaborations (Albert, A. et al); Alves, S.; Calvo, D.; Carretero, V.; Gozzini, R.; Hernandez-Rey, J.J.; Khan-Chowdhury, N.R.; Manczak, J.; Pieterse, C.; Real, D.; Sanchez-Losa, A.; Salesa Greus, F.; Zornoza, J.D.; Zuñiga, J. url  doi
openurl 
  Title Search for Spatial Correlations of Neutrinos with Ultra-high-energy Cosmic Rays Type Journal Article
  Year 2022 Publication Astrophysical Journal Abbreviated Journal Astrophys. J.  
  Volume (down) 934 Issue 2 Pages 164 - 21pp  
  Keywords Neutrino astronomy; High energy astrophysics; Ultra-high-energy cosmic radiation  
  Abstract For several decades, the origin of ultra-high-energy cosmic rays (UHECRs) has been an unsolved question of high-energy astrophysics. One approach for solving this puzzle is to correlate UHECRs with high-energy neutrinos, since neutrinos are a direct probe of hadronic interactions of cosmic rays and are not deflected by magnetic fields. In this paper, we present three different approaches for correlating the arrival directions of neutrinos with the arrival directions of UHECRs. The neutrino data are provided by the IceCube Neutrino Observatory and ANTARES, while the UHECR data with energies above similar to 50 EeV are provided by the Pierre Auger Observatory and the Telescope Array. All experiments provide increased statistics and improved reconstructions with respect to our previous results reported in 2015. The first analysis uses a high-statistics neutrino sample optimized for point-source searches to search for excesses of neutrino clustering in the vicinity of UHECR directions. The second analysis searches for an excess of UHECRs in the direction of the highest-energy neutrinos. The third analysis searches for an excess of pairs of UHECRs and highest-energy neutrinos on different angular scales. None of the analyses have found a significant excess, and previously reported overfluctuations are reduced in significance. Based on these results, we further constrain the neutrino flux spatially correlated with UHECRs.  
  Address [Albert, A.; Drouhin, D.; Pradier, T.] Univ Strasbourg, CNRS, IPHC UMR 7178, F-67000 Strasbourg, France  
  Corporate Author Thesis  
  Publisher IOP Publishing Ltd Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0004-637x ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000837839400001 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 5333  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records:
ific federMinisterio de Ciencia e InnovaciĆ³nAgencia Estatal de Investigaciongva