toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Villanueva-Domingo, P.; Villaescusa-Navarro, F.; Angles-Alcazar, D.; Genel, S.; Marinacci, F.; Spergel, D.N.; Hernquist, L.; Vogelsberger, M.; Dave, R.; Narayanan, D. url  doi
openurl 
  Title Inferring Halo Masses with Graph Neural Networks Type Journal Article
  Year 2022 Publication Astrophysical Journal Abbreviated Journal Astrophys. J.  
  Volume (down) 935 Issue 1 Pages 30 - 15pp  
  Keywords  
  Abstract Understanding the halo-galaxy connection is fundamental in order to improve our knowledge on the nature and properties of dark matter. In this work, we build a model that infers the mass of a halo given the positions, velocities, stellar masses, and radii of the galaxies it hosts. In order to capture information from correlations among galaxy properties and their phase space, we use Graph Neural Networks (GNNs), which are designed to work with irregular and sparse data. We train our models on galaxies from more than 2000 state-of-the-art simulations from the Cosmology and Astrophysics with MachinE Learning Simulations project. Our model, which accounts for cosmological and astrophysical uncertainties, is able to constrain the masses of the halos with a similar to 0.2 dex accuracy. Furthermore, a GNN trained on a suite of simulations is able to preserve part of its accuracy when tested on simulations run with a different code that utilizes a distinct subgrid physics model, showing the robustness of our method. The PyTorch Geometric implementation of the GNN is publicly available on GitHub (https://github.com/PabloVD/HaloGraphNet).  
  Address [Villanueva-Domingo, Pablo] Univ Valencia, Inst Fis Corpuscular IFIC, CSIC, E-46980 Paterna, Spain, Email: pablo.villanueva.domingo@gmail.com;  
  Corporate Author Thesis  
  Publisher IOP Publishing Ltd Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0004-637x ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000838320900001 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 5325  
Permanent link to this record
 

 
Author Guadilla, V. et al; Tain, J.L.; Algora, A.; Agramunt, J.; Gelletly, W.; Jordan, D.; Monserrate, M.; Montaner-Piza, A.; Orrigo, S.E.A.; Rubio, B.; Valencia, E. url  doi
openurl 
  Title Characterization and performance of the DTAS detector Type Journal Article
  Year 2018 Publication Nuclear Instruments & Methods in Physics Research A Abbreviated Journal Nucl. Instrum. Methods Phys. Res. A  
  Volume (down) 910 Issue Pages 79-89  
  Keywords beta decay; Total absorption gamma-ray spectrometer; Exotic nuclei; NaI(Tl) detector; Non-proportional scintillation light yield; Monte Carlo simulations  
  Abstract DTAS is a segmented total absorption y-ray spectrometer developed for the DESPEC experiment at FAIR. It is composed of up to eighteen NaI(Tl) crystals. In this work we study the performance of this detector with laboratory sources and also under real experimental conditions. We present a procedure to reconstruct offline the sum of the energy deposited in all the crystals of the spectrometer, which is complicated by the effect of NaI(Tl) light-yield non-proportionality. The use of a system to correct for time variations of the gain in individual detector modules, based on a light pulse generator, is demonstrated. We describe also an event-based method to evaluate the summing-pileup electronic distortion in segmented spectrometers. All of this allows a careful characterization of the detector with Monte Carlo simulations that is needed to calculate the response function for the analysis of total absorption gamma-ray spectroscopy data. Special attention was paid to the interaction of neutrons with the spectrometer, since they are a source of contamination in studies of beta-delayed neutron emitting nuclei.  
  Address [Guadilla, V; Tain, J. L.; Algora, A.; Agramunt, J.; Gelletly, W.; Jordan, D.; Monserrate, M.; Montaner-Piza, A.; Orrigo, S. E. A.; Rubio, B.; Valencia, E.] CSIC Univ Valencia, Inst Fis Corpuscular, E-46071 Valencia, Spain, Email: guadilla@ific.uv.es  
  Corporate Author Thesis  
  Publisher Elsevier Science Bv Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0168-9002 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000453652500010 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 3847  
Permanent link to this record
 

 
Author Guadilla, V. et al; Algora, A.; Tain, J.L.; Agramunt, J.; Jordan, D.; Monserrate, M.; Montaner-Piza, A.; Orrigo, S.E.A.; Rubio, B.; Valencia, E. url  doi
openurl 
  Title Characterization of a cylindrical plastic beta-detector with Monte Carlo simulations of optical photons Type Journal Article
  Year 2017 Publication Nuclear Instruments & Methods in Physics Research A Abbreviated Journal Nucl. Instrum. Methods Phys. Res. A  
  Volume (down) 854 Issue Pages 134-138  
  Keywords Plastic scintillators; Monte Carlo simulations; Total absorption spectroscopy; Optical photons  
  Abstract In this work we report on the Monte Carlo study performed to understand and reproduce experimental measurements of a new plastic beta-detector with cylindrical geometry. Since energy deposition simulations differ from the experimental measurements for such a geometry, we show how the simulation of production and transport of optical photons does allow one to obtain the shapes of the experimental spectra. Moreover, taking into account the computational effort associated with this kind of simulation, we develop a method to convert the simulations of energy deposited into light collected, depending only on the interaction point in the detector. This method represents a useful solution when extensive simulations have to be done, as in the case of the calculation of the response function of the spectrometer in a total absorption gamma-ray spectroscopy analysis.  
  Address [Guadilla, V.; Algora, A.; Tain, J. L.; Agramunt, J.; Gelletly, W.; Jordan, D.; Monserrate, M.; Montaner-Piza, A.; Orrigo, S. E. A.; Rubio, B.; Valencia, E.] Univ Valencia, CSIC, Inst Fis Corpuscular, E-46071 Valencia, Spain, Email: victor.guadilla@ific.uv.es  
  Corporate Author Thesis  
  Publisher Elsevier Science Bv Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0168-9002 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000398869100018 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 3052  
Permanent link to this record
 

 
Author Jordan, D.; Algora, A.; Tain, J.L. doi  openurl
  Title An event generator for simulations of complex beta-decay experiments Type Journal Article
  Year 2016 Publication Nuclear Instruments & Methods in Physics Research A Abbreviated Journal Nucl. Instrum. Methods Phys. Res. A  
  Volume (down) 828 Issue Pages 52-57  
  Keywords Monte Carlo event generator; Complex beta-decay experiments simulations  
  Abstract This article describes a Monte Carlo event generator for the design, optimization and performance characterization of beta decay spectroscopy experimental set-ups. The event generator has been developed within the Geant4 simulation architecture and provides new features and greater flexibility in comparison with the current available decay generator.  
  Address [Jordan, D.; Algora, A.; Tain, J. L.] Univ Valencia, CSIC, Ctr Mixto, Inst Fis Corpuscular, Valencia, Spain, Email: jordan@ific.uv.es  
  Corporate Author Thesis  
  Publisher Elsevier Science Bv Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0168-9002 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000377399700007 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 2714  
Permanent link to this record
 

 
Author Magan, D.L.P.; Caballero, L.; Domingo-Pardo, C.; Agramunt-Ros, J.; Albiol, F.; Casanovas, A.; Gonzalez, A.; Guerrero, C.; Lerendegui-Marco, J.; Tarifeño-Saldivia, A. url  doi
openurl 
  Title First tests of the applicability of gamma-ray imaging for background discrimination in time-of-flight neutron capture measurements Type Journal Article
  Year 2016 Publication Nuclear Instruments & Methods in Physics Research A Abbreviated Journal Nucl. Instrum. Methods Phys. Res. A  
  Volume (down) 823 Issue Pages 107-119  
  Keywords Neutron capture cross-sections; gamma-ray imaging; Total energy detectors; Pulse-height weighting technique; Time-of-flight method  
  Abstract In this work we explore for the first time the applicability of using gamma-ray imaging in neutron capture measurements to identify and suppress spatially localized background. For this aim, a pinhole gamma camera is assembled, tested and characterized in terms of energy and spatial performance. It consists of a monolithic CeBr3 scintillating crystal coupled to a position-sensitive photomultiplier and readout through an integrated circuit AMIC2GR. The pinhole collimator is a massive carven block of lead. A series of dedicated measurements with calibrated sources and with a neutron beam incident on a Au-197 sample have been carried out at n_TOF, achieving an enhancement of a factor of two in the signal-to-background ratio when selecting only those events coming from the direction of the sample.  
  Address [Perez Magan, D. L.; Caballero, L.; Domingo-Pardo, C.; Agramunt-Ros, J.; Albiol, F.; Tarifeno-Saldivia, A.] Univ Valencia, CSIC, IFIC, E-46071 Valencia, Spain, Email: domingo@ific.uv.es  
  Corporate Author Thesis  
  Publisher Elsevier Science Bv Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0168-9002 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000374661600015 Approved no  
  Is ISI yes International Collaboration no  
  Call Number IFIC @ pastor @ Serial 2665  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records:
ific federMinisterio de Ciencia e InnovaciĆ³nAgencia Estatal de Investigaciongva