toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Aliaga, R.J.; Herrero-Bosch, V.; Capra, S.; Pullia, A.; Duenas, J.A.; Grassi, L.; Triossi, A.; Domingo-Pardo, C.; Gadea, R.; Gonzalez, V.; Huyuk, T.; Sanchis, E.; Gadea, A.; Mengoni, D. doi  openurl
  Title Conceptual design of the TRACE detector readout using a compact, dead time-less analog memory ASIC Type Journal Article
  Year 2015 Publication Nuclear Instruments & Methods in Physics Research A Abbreviated Journal Nucl. Instrum. Methods Phys. Res. A  
  Volume (down) 800 Issue Pages 34-39  
  Keywords Analog memory; Dead time; Detector readout; Front-end electronics; Switched Capacitor Array (SCA); Triggerless data acquisition  
  Abstract The new TRacking Array for light Charged particle Ejectiles (TRACE) detector system requires monitorization and sampling of all pulses in a large number of channels with very strict space and power consumption restrictions for the front-end electronics and cabling, Its readout system is to be based on analog memory ASICs with 64 channels each that sample a 1 μs window of the waveform of any valid pulses at 200 MHz while discarding any other signals and are read out at 50 MHz with external ADC digitization. For this purpose, a new, compact analog memory architecture is described that allows pulse capture with zero dead time in any channel while vastly reducing the total number of storage cells, particularly for large amounts of input channels. This is accomplished by partitioning the typical Switched Capacitor Array structure into two pipelined, asymmetric stages and introducing FIFO queue-like control circuitry for captured data, achieving total independence between the capture and readout operations.  
  Address [Aliaga, R. J.; Domingo-Pardo, C.; Hueyuek, T.; Gadea, A.] Inst Fis Corpuscular, Paterna 46980, Spain, Email: raalva@ific.uv.es  
  Corporate Author Thesis  
  Publisher Elsevier Science Bv Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0168-9002 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000361878200006 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 2407  
Permanent link to this record
 

 
Author Modamio, V.; Valiente-Dobon, J.J.; Jaworski, G.; Huyuk, T.; Triossi, A.; Egea, J.; Di Nitto, A.; Soderstrom, P.A.; Ros, J.A.; de Angelis, G.; de France, G.; Erduran, M.N.; Erturk, S.; Gadea, A.; Gonzalez, V.; Kownacki, J.; Moszynski, M.; Nyberg, J.; Palacz, M.; Sanchis, E.; Wadsworthm, R. doi  openurl
  Title Digital pulse-timing technique for the neutron detector array NEDA Type Journal Article
  Year 2015 Publication Nuclear Instruments & Methods in Physics Research A Abbreviated Journal Nucl. Instrum. Methods Phys. Res. A  
  Volume (down) 775 Issue Pages 71-76  
  Keywords Digital timing; Constant fraction discriminator; Liquid scintillator; BC501A; Neutron detector; NEDA  
  Abstract A new digital pulse-timing algorithm, to be used with the future neutron detector array NEDA, has been developed and tested. The time resolution of four 5 in diameter photomultiplier tubes (XP4512, R4144, R11833-100, and ET9390-kb), coupled to a cylindrical 5 in by 5 in BC501A liquict scintillator detector was measured by employing digital sampling electronics and a constant fraction discriminator (CFD) algorithm. The zero crossing of the CM algorithm was obtained with a cubic spline interpolation, which was continuous up to the second derivative. The performance of the algorithm was studied at sampling rates of 500 MS/s and 200 MS/s. The time resolution obtained with the digital electronics was compared to the values acquired with a standard analog CFD. The result of this comparison shows that the time resolution from the analog and the digital measurements at 500 MS/s and at 200 MS/s are within 15% for all the tested photomultiplier tubes.  
  Address [Modamio, V.; Valiente-Dobon, J. J.; Triossi, A.; de Angelis, G.] Ist Nazl Fis Nucl, Lab Nazl Legnaro, I-35020 Legnaro, Italy, Email: victor.modamio@lnl.infn.it  
  Corporate Author Thesis  
  Publisher Elsevier Science Bv Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0168-9002 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000348040900011 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 2093  
Permanent link to this record
 

 
Author Mengoni, D.; Duenas, J.A.; Assie, M.; Boiano, C.; John, P.R.; Aliaga, R.J.; Beaumel, D.; Capra, S.; Gadea, A.; Gonzales, V.; Gottardo, A.; Grassi, L.; Herrero-Bosch, V.; Houdy, T.; Martel, I.; Parkar, V.V.; Perez-Vidal, R.M.; Pullia, A.; Sanchis, E.; Triossi, A.; Valiente-Dobon, J.J. doi  openurl
  Title Digital pulse-shape analysis with a TRACE early silicon prototype Type Journal Article
  Year 2014 Publication Nuclear Instruments & Methods in Physics Research A Abbreviated Journal Nucl. Instrum. Methods Phys. Res. A  
  Volume (down) 764 Issue Pages 241-246  
  Keywords Silicon detector; Light-charged particles; Digital pulse shape analysis; Particle identification; Gamma-ray spectroscopy  
  Abstract A highly segmented silicon-pad detector prototype has been tested to explore the performance of the digital pulse shape analysis in the discrimination of the particles reaching the silicon detector. For the first time a 200 tun thin silicon detector, grown using an ordinary floating zone technique, has been shown to exhibit a level discrimination thanks to the fine segmentation. Light-charged particles down to few MeV have been separated, including their punch-through. A coaxial HPGe detector in time coincidence has further confirmed the quality of the particle discrimination.  
  Address [Mengoni, D.; John, P. R.; Grassi, L.] Univ Padua, Dipartimento Fis & Astron, I-35131 Padua, Italy  
  Corporate Author Thesis  
  Publisher Elsevier Science Bv Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0168-9002 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000341987000030 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 1929  
Permanent link to this record
 

 
Author Jaworski, G.; Palacz, M.; Nyberg, J.; de Angelis, G.; de France, G.; Di Nitto, A.; Egea, F.J.; Erduran, M.N.; Erturk, S.; Farnea, E.; Gadea, A.; Gonzalez, V.; Gottardo, A.; Huyuk, T.; Kownacki, J.; Pipidis, A.; Roeder, B.; Soderstrom, P.A.; Sanchis, E.; Tarnowski, R.; Triossi, A.; Wadsworth, R.; Valiente-Dobon, J.J. doi  openurl
  Title Monte Carlo simulation of a single detector unit for the neutron detector array NEDA Type Journal Article
  Year 2012 Publication Nuclear Instruments & Methods in Physics Research A Abbreviated Journal Nucl. Instrum. Methods Phys. Res. A  
  Volume (down) 673 Issue Pages 64-72  
  Keywords Monte Carlo simulation; BC501; BC501A; BC537; Liquid scintillator; Neutron detector; Geant4; NEDA  
  Abstract A study of the dimensions and performance of a single detector of the future neutron detector array NEDA was performed by means of Monte Carlo simulations, using GEANT4. Two different liquid scintillators were evaluated: the hydrogen based BC501A and the deuterated BC537. The efficiency and the probability that one neutron will trigger a signal in more than one detector were investigated as a function of the detector size. The simulations were validated comparing the results to experimental measurements performed with two existing neutron detectors, with different geometries, based on the liquid scintillator BC501.  
  Address [Jaworski, G.; Palacz, M.; Kownacki, J.; Tarnowski, R.] Univ Warsaw, Heavy Ion Lab, PL-02093 Warsaw, Poland, Email: palacz@slcj.uw.edu.pl  
  Corporate Author Thesis  
  Publisher Elsevier Science Bv Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0168-9002 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000301813500009 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 944  
Permanent link to this record
 

 
Author Valero, A.; Castillo Gimenez, V.; Ferrer, A.; Gonzalez, V.; Hernandez Jimenez, Y.; Higon-Rodriguez, E.; Sanchis, E.; Solans, C.; Torres, J.; Valls Ferrer, J.A. doi  openurl
  Title The ATLAS tile calorimeter ROD injector and multiplexer board Type Journal Article
  Year 2011 Publication Nuclear Instruments & Methods in Physics Research A Abbreviated Journal Nucl. Instrum. Methods Phys. Res. A  
  Volume (down) 629 Issue 1 Pages 74-79  
  Keywords LHC; ATLAS; Calorimeter; Data acquisition; FPGA; Bit error rate  
  Abstract The ATLAS Tile Calorimeter is a sampling detector composed by cells made of iron-scintillator tiles. The calorimeter cell signals are digitized in the front-end electronics and transmitted to the Read-Out Drivers (RODs) at the first level trigger rate. The ROD receives triggered data from up to 9856 channels and provides the energy, phase and quality factor of the signals to the second level trigger. The back-end electronics is divided into four partitions containing eight RODs each. Therefore, a total of 32 RODs are used to process and transmit the data of the TileCal detector. In order to emulate the detector signals in the production and commissioning of ROD modules a board called ROD Injector and Multiplexer Board (RIMBO) was designed. In this paper, the RIMBO main functional blocks, PCB design and the different operation modes are described. It is described the crucial role of the board within the TileCal ROD test-bench in order to emulate the front-end electronics during the validation of ROD boards as well as during the evaluation of the ROD signal reconstruction algorithms. Finally, qualification and performance results for the injection operation mode obtained during the Tile Calorimeter ROD production tests are presented.  
  Address [Valero, A.; Castillo, V.; Ferrer, A.; Hernandez, Y.; Higon, E.; Solans, C.; Valls, J. A.] Univ Valencia, CSIC, Inst Fis Corpuscular, Valencia 46071, Spain, Email: alberto.valero@cern.ch  
  Corporate Author Thesis  
  Publisher Elsevier Science Bv Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0168-9002 ISBN Medium  
  Area Expedition Conference  
  Notes ISI:000287556100012 Approved no  
  Is ISI yes International Collaboration no  
  Call Number IFIC @ pastor @ Serial 555  
Permanent link to this record
 

 
Author ATLAS Collaboration (Abat, E. et al); Castillo Gimenez, V.; Ferrer, A.; Gonzalez, V.; Higon-Rodriguez, E.; Mitsou, V.A.; Ruiz, A.; Sanchis, E.; Solans, C.; Torres, J.; Valero, A.; Valls Ferrer, J.A. doi  openurl
  Title Study of energy response and resolution of the ATLAS barrel calorimeter to hadrons of energies from 20 to 350 GeV Type Journal Article
  Year 2010 Publication Nuclear Instruments & Methods in Physics Research A Abbreviated Journal Nucl. Instrum. Methods Phys. Res. A  
  Volume (down) 621 Issue 1-3 Pages 134-150  
  Keywords ATLAS; Calorimetry; Test-beam; Calibration; Simulation  
  Abstract A fully instrumented slice of the ATLAS detector was exposed to test beams from the SPS (Super Proton Synchrotron) at CERN in 2004. In this paper, the results of the measurements of the response of the barrel calorimeter to hadrons with energies in the range 20-350 GeV and beam impact points and angles corresponding to pseudo-rapidity values in the range 0.2-0.65 are reported. The results are compared to the predictions of a simulation program using the Geant 4 toolkit.  
  Address [Abata, E.; Arik, E.; Cetin, S. A.] Bogazici Univ, Fac Sci, Dept Phys, TR-80815 Bebek, Turkey, Email: atlassecretariat@cern.ch  
  Corporate Author Thesis  
  Publisher Elsevier Science Bv Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0168-9002 ISBN Medium  
  Area Expedition Conference  
  Notes ISI:000281109100019 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ elepoucu @ Serial 389  
Permanent link to this record
 

 
Author ATLAS Collaboration (Adragna, P. et al); Castelo, J.; Castillo Gimenez, V.; Cuenca, C.; Ferrer, A.; Fullana, E.; Gonzalez, V.; Higon-Rodriguez, E.; Poveda, J.; Ruiz, A.; Salvachua, B.; Sanchis, E.; Solans, C.; Torres, J.; Valero, A.; Valls Ferrer, J.A. doi  openurl
  Title Measurement of pion and proton response and longitudinal shower profiles up to 20 nuclear interaction lengths with the ATLAS Tile calorimeter Type Journal Article
  Year 2010 Publication Nuclear Instruments & Methods in Physics Research A Abbreviated Journal Nucl. Instrum. Methods Phys. Res. A  
  Volume (down) 615 Issue 2 Pages 158-181  
  Keywords Calorimeter; Test-beam; ATLAS; Monte Carlo simulation; GEANT4; Hadronic shower development; Pion-proton response; Longitudinal shower profile for hadrons  
  Abstract The response of pions and protons in the energy range of 20-180 GeV, produced at CERN's SPS H8 test-beam line in the ATLAS iron-scintillator Tile hadron calorimeter, has been measured. The test-beam configuration allowed the measurement of the longitudinal shower development for pions and protons up to 20 nuclear interaction lengths. It was found that pions penetrate deeper in the calorimeter than protons. However, protons induce showers that are wider laterally to the direction of the impinging particle. Including the measured total energy response, the pion-to-proton energy ratio and the resolution, all observations are consistent with a higher electromagnetic energy fraction in pion-induced showers. The data are compared with GEANT4 simulations using several hadronic physics lists. The measured longitudinal shower profiles are described by an analytical shower parametrization within an accuracy of 5-10%. The amount of energy leaking out behind the calorimeter is determined and parametrized as a function of the beam energy and the calorimeter depth. This allows for a leakage correction of test-beam results in the standard projective geometry.  
  Address [Hakobyan, H.; Simonyan, M.] Yerevan Phys Inst, Yerevan 375036, Armenia, Email: Margar.Simonyan@cern.ch  
  Corporate Author Thesis  
  Publisher Elsevier Science Bv Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0168-9002 ISBN Medium  
  Area Expedition Conference  
  Notes ISI:000276299900002 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 252  
Permanent link to this record
 

 
Author Oliver, S.; Vijande, J.; Tejedor-Aguilar, N.; Miro, R.; Rovira-Escutia, J.J.; Ballester, F.; Juste, B.; Carmona, V.; Felici, G.; Verdu, G.; Sanchis, E.; Conde, A.; Perez-Calatayud, J. doi  openurl
  Title Monte Carlo flattening filter design to high energy intraoperative electron beam homogenization Type Journal Article
  Year 2023 Publication Radiation Physics and Chemistry Abbreviated Journal Radiat. Phys. Chem.  
  Volume (down) 212 Issue Pages 111102 - 6pp  
  Keywords Intraoperative radiotherapy; Electron portable LinAc; Flattening filter; Dosimetry; Monte Carlo  
  Abstract Intraoperative radiotherapy using mobile linear accelerators is used for a wide variety of malignancies. However, when large fields are used in combination with high energies, a deterioration of the flatness dose profile is measured with respect to smaller fields and lower energies. Indeed, for the LIAC HWL of Sordina, this deterioration is observed for the 12 MeV beam combined with 10 cm (or larger) diameter applicator. Aimed to solve this problem, a flattening filter has been designed and validated evaluating the feasibility of its usage at the upper part of the applicator. The design of the filter was based on Monte Carlo simulations because of its accuracy in modeling components of clinical devices, among other purposes. The LIAC 10 cm diameter applicator was modeled and simulated independently by two different research groups using two different MC codes, reproducing the heterogeneity of the 12 MeV energy beam. Then, an iterative process of filter design was carried out. Finally, the MC designed conical filter with the optimal size and height to obtain the desired flattened beam was built in-house using a 3D printer. During the experimental validation of the applicator-filter, percentage depth dose, beam profiles, absolute and peripheral dose measurements were performed to demonstrate the effectiveness of the filter addition in the applicator. These measurements conclude that the beam has been flattened, from 5.9% with the standard configuration to 1.6% for the configuration with the filter, without significant increase of the peripheral dose. Consequently, the new filter-applicator LIAC configuration can be used also in a conventional surgery room. A reduction of 16% of the output dose and a reduction of 1.1 mm in the D50 of the percentage depth dose was measured with respect to the original configuration. This work is a proof-of-concept that demonstrates that it is possible to add a filter able to flatten the beam delivered by the Sordina LIAC HWL. Future studies will focus on more refined technical solutions fully compatible with the integrity of the applicator, including its sterilization, to be safely introduced in the clinical practice.  
  Address [Oliver, S.; Miro, R.; Juste, B.; Verdu, G.] Univ Polite cn Vale ncia, Inst Segur Ind Radiofis & Medioambiental ISIRYM, Cami Vera S-N, Valencia 46022, Spain, Email: gverdu@iqn.upv.es  
  Corporate Author Thesis  
  Publisher Pergamon-Elsevier Science Ltd Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0969-806x ISBN Medium  
  Area Expedition Conference  
  Notes WOS:001026194900001 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 5578  
Permanent link to this record
 

 
Author Barrientos, D.; Bellato, M.; Bazzacco, D.; Bortolato, D.; Cocconi, P.; Gadea, A.; Gonzalez, V.; Gulmini, M.; Isocrate, R.; Mengoni, D.; Pullia, A.; Recchia, F.; Rosso, D.; Sanchis, E.; Toniolo, N.; Ur, C.A.; Valiente-Dobon, J.J. url  doi
openurl 
  Title Performance of the Fully Digital FPGA-Based Front-End Electronics for the GALILEO Array Type Journal Article
  Year 2015 Publication IEEE Transactions on Nuclear Science Abbreviated Journal IEEE Trans. Nucl. Sci.  
  Volume (down) 62 Issue 6 Pages 3134-3139  
  Keywords FPGA; front-end electronics; gamma-ray spectroscopy; germanium detectors  
  Abstract In this work we present the architecture and results of a fully digital Front End Electronics (FEE) read out system developed for the GALILEO array. The FEE system, developed in collaboration with the Advanced Gamma Tracking Array (AGATA) collaboration, is composed of three main blocks: preamplifiers, digitizers and preprocessing electronics. The slow control system contains a custom Linux driver, a dynamic library and a server implementing network services. This work presents the first results of the digital FEE system coupled with a GALILEO germanium detector, which has demonstrated the capability to achieve an energy resolution of 1.53% at an energy of 1.33 MeV, similar to the one obtained with a conventional analog system. While keeping a good performance in terms of energy resolution, digital electronics will allow to instrument the full GALILEO array with a versatile system with high integration and low power consumption and costs.  
  Address [Barrientos, D.; Bortolato, D.; Cocconi, P.; Gulmini, M.; Rosso, D.; Toniolo, N.; Valiente-Dobon, J. J.] Ist Nazl Fis Nucl, Lab Nazl Legnaro, I-35020 Padua, Italy, Email: diego.barrientos@lnl.infn.it  
  Corporate Author Thesis  
  Publisher Ieee-Inst Electrical Electronics Engineers Inc Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0018-9499 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000372013500005 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 2612  
Permanent link to this record
 

 
Author Barrientos, D.; Gonzalez, V.; Bellato, M.; Gadea, A.; Bazzacco, D.; Blasco, J.M.; Bortolato, D.; Egea, F.J.; Isocrate, R.; Pullia, A.; Rampazzo, G.; Sanchis, E.; Triossi, A. doi  openurl
  Title Multiple Register Synchronization With a High-Speed Serial Link Using the Aurora Protocol Type Journal Article
  Year 2013 Publication IEEE Transactions on Nuclear Science Abbreviated Journal IEEE Trans. Nucl. Sci.  
  Volume (down) 60 Issue 5 Pages 3521-3525  
  Keywords  
  Abstract In this work, the development and characterization of a multiple synchronous registers interface communicating with a high-speed serial link and using the Aurora protocol is presented. A detailed description of the developing process and the characterization methods and hardware test benches are also included. This interface will implement the slow control buses of the digitizer cards for the second generation of electronics for the Advanced GAmma Tracking Array (AGATA).  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0018-9499 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000325827700014 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 1612  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records:
ific federMinisterio de Ciencia e InnovaciĆ³nAgencia Estatal de Investigaciongva