toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Cepedello, R.; Deppisch, F.F.; Gonzalez, L.; Hati, C.; Hirsch, M. url  doi
openurl 
  Title Neutrinoless Double-Beta Decay with Nonstandard Majoron Emission Type Journal Article
  Year 2019 Publication Physical Review Letters Abbreviated Journal Phys. Rev. Lett.  
  Volume (down) 122 Issue 18 Pages 181801 - 6pp  
  Keywords  
  Abstract We present a novel mode of neutrinoless double-beta decay with emission of a light Majoron-like scalar particle phi. We assume it couples via an effective seven-dimensional operator with a (V + A) lepton current and (V +/- A) quark currents leading to a long-range contribution that is unsuppressed by the light neutrino mass. We calculate the total double-beta decay rate and determine the fully differential shape for this mode. We find that future double-beta decay searches are sensitive to scales of the order Lambda(NP) approximate to 1 TeV for the effective operator and a light scalar m(phi) < 0.2 MeV, based on ordinary double-beta decay Majoron searches. The angular and energy distributions can deviate considerably from that of two-neutrino double-beta decay, which is the main background. We point out possible ultraviolet completions where such an effective operator can emerge.  
  Address [Cepedello, Ricardo; Hirsch, Martin] Univ Valencia, CSIC, Inst Fis Corpuscular, AHEP Grp, Edificio Inst Paterna,Apartado 22085, E-46071 Valencia, Spain, Email: ricepe@ific.uv.es;  
  Corporate Author Thesis  
  Publisher Amer Physical Soc Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0031-9007 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000467042800001 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 4002  
Permanent link to this record
 

 
Author Cepedello, R.; Escribano, P.; Vicente, A. url  doi
openurl 
  Title Neutrino masses, flavor anomalies, and muon g-2 from dark loops Type Journal Article
  Year 2023 Publication Physical Review D Abbreviated Journal Phys. Rev. D  
  Volume (down) 107 Issue 3 Pages 035034 - 6pp  
  Keywords  
  Abstract The lepton sector of the Standard Model is at present haunted by several intriguing anomalies, including an emerging pattern of deviations in b ? sll processes, with hints of lepton flavor universality violation, and a discrepancy in the muon anomalous magnetic moment. More importantly, it cannot explain neutrino oscillation data, which necessarily imply the existence of nonzero neutrino masses and lepton mixings. We propose a model that accommodates all the aforementioned anomalies, induces neutrino masses and provides a testable dark matter candidate. This is achieved by introducing a dark sector contributing to the observables of interest at the 1-loop level. Our setup provides a very economical explanation to all these open questions in particle physics and is compatible with the current experimental constraints.  
  Address [Cepedello, Ricardo] Univ Wurzburg, Inst Theoret Phys & Astrophys, D-97074 Wurzburg, Germany, Email: ricardo.cepedello@physik.uni-wuerzburg.de;  
  Corporate Author Thesis  
  Publisher Amer Physical Soc Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2470-0010 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:001004183600012 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 5558  
Permanent link to this record
 

 
Author Alvarez, A.; Cepedello, R.; Hirsch, M.; Porod, W. url  doi
openurl 
  Title Temperature effects on the Z(2) symmetry breaking in the scotogenic model Type Journal Article
  Year 2022 Publication Physical Review D Abbreviated Journal Phys. Rev. D  
  Volume (down) 105 Issue 3 Pages 035013 - 8pp  
  Keywords  
  Abstract It is well known that the scotogenic model for neutrino mass generation can explain correctly the relic abundance of cold dark matter. There have been claims in the literature that an important part of the parameter space of the simplest scotogentic model can be constrained by the requirement that no Z(2)-breaking must occur in the early universe. Here we show that this requirement does not give any constraints on the underlying parameter space at least in those parts, where we can trust perturbation theory. To demonstrate this, we have taken into account the proper decoupling of heavy degrees of freedom in both the thermal potential and in the RGE evolution.  
  Address [Alvarez, Alexandre; Cepedello, Ricardo; Porod, Werner] Univ Wurzburg, Inst Theoret Phys & Astrophys, Campus Hubland Nord, D-97074 Wurzburg, Germany, Email: alexandre.alvarez@physik.uni-wuerzburg.de;  
  Corporate Author Thesis  
  Publisher Amer Physical Soc Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2470-0010 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000761164000001 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 5152  
Permanent link to this record
 

 
Author Arbelaez, C.; Cepedello, R.; Fonseca, R.M.; Hirsch, M. url  doi
openurl 
  Title (g-2) anomalies and neutrino mass Type Journal Article
  Year 2020 Publication Physical Review D Abbreviated Journal Phys. Rev. D  
  Volume (down) 102 Issue 7 Pages 075005 - 14pp  
  Keywords  
  Abstract Motivated by the experimentally observed deviations from standard model predictions, we calculate the anomalous magnetic moments a(alpha) = (g – 2)(alpha) for a = e, μin a neutrino mass model originally proposed by Babu, Nandi, and Tavartkiladze (BNT). We discuss two variants of the model: the original model, and a minimally extended version with an additional hypercharge-zero triplet scalar. While the original BNT model can explain a(mu), only the variant with the triplet scalar can explain both experimental anomalies. The heavy fermions of the model can be produced at the high-luminosity LHC, and in the part of parameter space where the model explains the experimental anomalies it predicts certain specific decay patterns for the exotic fermions.  
  Address [Arbelaez, Carolina] Univ Tecn Federico Santa Maria, Casilla 110-5, Valparaiso, Chile, Email: carolina.arbelaez@usm.cl;  
  Corporate Author Thesis  
  Publisher Amer Physical Soc Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1550-7998 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000576053400004 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 4557  
Permanent link to this record
 

 
Author Bonilla, C.; Centelles Chulia, S.; Cepedello, R.; Peinado, E.; Srivastava, R. url  doi
openurl 
  Title Dark matter stability and Dirac neutrinos using only standard model symmetries Type Journal Article
  Year 2020 Publication Physical Review D Abbreviated Journal Phys. Rev. D  
  Volume (down) 101 Issue 3 Pages 033011 - 5pp  
  Keywords  
  Abstract We provide a generic framework to obtain stable dark matter along with naturally small Dirac neutrino masses generated at the loop level. This is achieved through the spontaneous breaking of the global U(1)(B-L) symmetry already present in the standard model. The U(1)(B-L) symmetry is broken down to a residual even Z(n) (n >= 4) subgroup. The residual Z(n) symmetry simultaneously guarantees dark matter stability and protects the Dirac nature of neutrinos. The U(1)(B-L) symmetry in our setup is anomaly free and can also be gauged in a straightforward way. Finally, we present an explicit example using our framework to show the idea in action.  
  Address [Bonilla, Cesar] Tech Univ Munich, Phys Dept T30d, James Franck Str, D-85748 Garching, Germany, Email: cesar.bonilla@tum.de;  
  Corporate Author Thesis  
  Publisher Amer Physical Soc Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2470-0010 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000517243100001 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 4308  
Permanent link to this record
 

 
Author Arbelaez, C.; Carcamo Hernandez, A.E.; Cepedello, R.; Hirsch, M.; Kovalenko, S. url  doi
openurl 
  Title Radiative type-I seesaw neutrino masses Type Journal Article
  Year 2019 Publication Physical Review D Abbreviated Journal Phys. Rev. D  
  Volume (down) 100 Issue 11 Pages 115021 - 7pp  
  Keywords  
  Abstract We discuss a radiative type-I seesaw. In these models, the radiative generation of Dirac neutrino masses allows to explain the smallness of the observed neutrino mass scale for rather light right-handed neutrino masses in a type-1 seesaw. We first present the general idea in a model-independent way. This allows us to estimate the typical scale of right-handed neutrino mass as a function of the number of loops. We then present two example models, at the one- and two-loop level, which we use to discuss neutrino masses and lepton-flavor-violating constraints in more detail. For the two-loop example, right-handed neutrino masses must lie below 100 GeV, thus making this class of models testable in heavy neutral lepton searches.  
  Address [Arbelaez, Carolina; Carcamo Hernandez, A. E.; Kovalenko, Sergey] Univ Tecn Federico Santa Maria, Dept Phys, Ave Espana 1680, Valparaiso, Chile, Email: carolina.arbelaez@usm.cl;  
  Corporate Author Thesis  
  Publisher Amer Physical Soc Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2470-0010 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000501488800006 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 4221  
Permanent link to this record
 

 
Author Centelles Chulia, S.; Cepedello, R.; Peinado, E.; Srivastava, R. url  doi
openurl 
  Title Scotogenic dark symmetry as a residual subgroup of Standard Model symmetries Type Journal Article
  Year 2020 Publication Chinese Physics C Abbreviated Journal Chin. Phys. C  
  Volume (down) 44 Issue 8 Pages 083110 - 7pp  
  Keywords neutrino masses; dark matter; symmetries; scotogenic  
  Abstract We demonstrate that a scotogenic dark symmetry can be obtained as a residual subgroup of the global U(1)(B-L) symmetry already present in the Standard Model. In addition, we propose a general framework in which the U(1)(B-L) symmetry is spontaneously broken into an even Z(2n) subgroup, setting the general conditions for neutrinos to be Majorana and for dark matter stability to exist in terms of the residual Z(2n). As an example, under this general framework, we build a class of simple models where, in a scotogenic manner, the dark matter candidate is the lightest particle running inside the mass loop of a neutrino. The global U(1)(B-L) symmetry in our framework, being anomaly free, can also be gauged in a straightforward manner leading to a richer phenomenology.  
  Address [Chulia, Salvador Centelles; Cepedello, Ricardo; Srivastava, Rahul] Univ Valencia, CSIC, Inst Fis Corpuscular, AHEP Grp, Parc Cient Paterna C Catedratico Jose Beltran 2, E-46980 Paterna, Valencia, Spain, Email: salcen@ific.uv.es;  
  Corporate Author Thesis  
  Publisher Iop Publishing Ltd Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1674-1137 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000557423400001 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 4494  
Permanent link to this record
 

 
Author Cepedello, R.; Fonseca, R.M.; Hirsch, M. url  doi
openurl 
  Title Systematic classification of three-loop realizations of the Weinberg operator Type Journal Article
  Year 2018 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.  
  Volume (down) 10 Issue 10 Pages 197 - 34pp  
  Keywords Beyond Standard Model; Neutrino Physics  
  Abstract We study systematically the decomposition of the Weinberg operator at three-loop order. There are more than four thousand connected topologies. However, the vast majority of these are infinite corrections to lower order neutrino mass diagrams and only a very small percentage yields models for which the three-loop diagrams are the leading order contribution to the neutrino mass matrix. We identify 73 topologies that can lead to genuine three-loop models with fermions and scalars, i.e. models for which lower order diagrams are automatically absent without the need to invoke additional symmetries. The 73 genuine topologies can be divided into two sub-classes: normal genuine ones (44 cases) and special genuine topologies (29 cases). The latter are a special class of topologies, which can lead to genuine diagrams only for very specific choices of fields. The genuine topologies generate 374 diagrams in the weak basis, which can be reduced to only 30 distinct diagrams in the mass eigenstate basis. We also discuss how all the mass eigenstate diagrams can be described in terms of only five master integrals. We present some concrete models and for two of them we give numerical estimates for the typical size of neutrino masses they generate. Our results can be readily applied to construct other d = 5 neutrino mass models with three loops.  
  Address [Cepedello, Ricardo; Hirsch, Martin] Univ Valencia, CSIC, AHEP Grp, Inst Fis Corpuscular, Edificio Inst Paterna,Apartado 22085, E-46071 Valencia, Spain, Email: ricepe@ific.uv.es;  
  Corporate Author Thesis  
  Publisher Springer Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1029-8479 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000449260800013 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 3792  
Permanent link to this record
 

 
Author Centelles Chulia, S.; Cepedello, R.; Peinado, E.; Srivastava, R. url  doi
openurl 
  Title Systematic classification of two-loop d=4 Dirac neutrino mass models and the Diracness-dark matter stability connection Type Journal Article
  Year 2019 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.  
  Volume (down) 10 Issue 10 Pages 093 - 33pp  
  Keywords Beyond Standard Model; Neutrino Physics  
  Abstract We provide a complete systematic classification of all two-loop realizations of the dimension four operator for Dirac neutrino masses. Our classification is multi-layered, starting first with a classification in terms of all possible distinct two loop topologies. Then we discuss the possible diagrams for each topology. Model-diagrams originating from each diagram are then considered. The criterion for genuineness is also defined and discussed at length. Finally, as examples, we construct two explicit models which also serve to highlight the intimate connection between the Dirac nature of neutrinos and the stability of dark matter.  
  Address [Chulia, Salvador Centelles; Cepedello, Ricardo; Srivastava, Rahul] Univ Valencia, CSIC, Inst Fis Corpuscular, AHEP Grp, Parc Cient Paterna,C Catedrat Jose Beltran 2, E-46980 Valencia, Spain, Email: salcen@ific.uv.es;  
  Corporate Author Thesis  
  Publisher Springer Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1029-8479 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000491092500001 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 4181  
Permanent link to this record
 

 
Author Centelles Chulia, S.; Cepedello, R.; Medina, O. url  doi
openurl 
  Title Absolute neutrino mass scale and dark matter stability from flavour symmetry Type Journal Article
  Year 2022 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.  
  Volume (down) 10 Issue 10 Pages 080 - 23pp  
  Keywords Discrete Symmetries; Flavour Symmetries; Neutrino Mixing; Particle Nature of Dark Matter  
  Abstract We explore a simple but extremely predictive extension of the scotogenic model. We promote the scotogenic symmetry Z(2) to the flavour non-Abelian symmetry sigma(81), which can also automatically protect dark matter stability. In addition, sigma(81) leads to striking predictions in the lepton sector: only Inverted Ordering is realised, the absolute neutrino mass scale is predicted to be m(lightest)approximate to 7.5x10(-4) eV and the Majorana phases are correlated in such a way that vertical bar m(ee)vertical bar approximate to 0.018 eV. The model also leads to a strong correlation between the solar mixing angle theta(12) and delta(CP), which may be falsified by the next generation of neutrino oscillation experiments. The setup is minimal in the sense that no additional symmetries or flavons are required.  
  Address [Chulia, Salvador Centelles] Max Planck Inst Kernphys, Saupfercheckweg 1, D-69117 Heidelberg, Germany, Email: chulia@mpi-hd.mpg.de;  
  Corporate Author Thesis  
  Publisher Springer Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1029-8479 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000867661300002 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 5387  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records:
ific federMinisterio de Ciencia e InnovaciĆ³nAgencia Estatal de Investigaciongva