toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Bordes, J.; Dominguez, C.A.; Moodley, P.; Peñarrocha, J.; Schilcher, K. url  doi
openurl 
  Title Chiral corrections to the SU(2) x SU(2) Gell-Mann-Oakes-Renner relation Type Journal Article
  Year 2010 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.  
  Volume (up) 05 Issue 5 Pages 064 - 16pp  
  Keywords QCD Phenomenology  
  Abstract The next to leading order chiral corrections to the SU(2) x SU(2) Gell-Mann-Oakes- Renner (GMOR) relation are obtained using the pseudoscalar correlator to five-loop order in perturbative QCD, together with new finite energy sum rules (FESR) incorporating polynomial, Legendre type, integration kernels. The purpose of these kernels is to suppress hadronic contributions in the region where they are least known. This reduces considerably the systematic uncertainties arising from the lack of direct experimental information on the hadronic resonance spectral function. Three different methods are used to compute the FESR contour integral in the complex energy (squared) s-plane, i.e. Fixed Order Perturbation Theory, Contour Improved Perturbation Theory, and a fixed renormalization scale scheme. We obtain for the corrections to the GMOR relation, delta(pi), the value delta(pi) = (6.2 +/- 1.6)%. This result is substantially more accurate than previous determinations based on QCD sum rules; it is also more reliable as it is basically free of systematic uncertainties. It implies a light quark condensate < 0 vertical bar(u) over baru vertical bar 0 > similar or equal to < 0 vertical bar(d) over bard vertical bar 0 > < 0 vertical bar(q) over barq vertical bar 0 >vertical bar(2GeV) = (-267 +/- 5MeV)(3). As a byproduct, the chiral perturbation theory (unphysical) low energy constant H-2(r) is predicted to be H-2(r)(nu(X) = M-p) = -(5.1 +/- 1.8) x10(-3), or H-2(r) (nu(X) = M-eta) = -(5.7 +/- 2.0) x10(-3).  
  Address [Bordes, J.; Penarrocha, J.] Univ Valencia, Dept Fis Teor, CSICE, E-46100 Burjassot, Spain, Email: bordes@uv.es  
  Corporate Author Thesis  
  Publisher Springer Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1126-6708 ISBN Medium  
  Area Expedition Conference  
  Notes ISI:000278250000044 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ elepoucu @ Serial 434  
Permanent link to this record
 

 
Author Baker, M.J.; Bordes, J.; Dominguez, C.A.; Peñarrocha, J.; Schilcher, K. url  doi
openurl 
  Title B meson decay constants f(Bc), f(Bs) and f(B) from QCD sum rules Type Journal Article
  Year 2014 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.  
  Volume (up) 07 Issue 7 Pages 032 - 16pp  
  Keywords Sum Rules; QCD  
  Abstract Finite energy QCD sum rules with Legendre polynomial integration kernels are used to determine the heavy meson decay constant f(Bc), and revisit f(B) and f(Bs). Results exhibit excellent stability in a wide range of values of the integration radius in the complex squared energy plane, and of the order of the Legendre polynomial. Results are f(Bc) = 528 +/- 19 MeV, f(B) = 186 +/- 14 MeV, and f(Bs) = 222 +/- 12 MeV.  
  Address [Baker, M. J.; Bordes, J.; Penarrocha, J.] Univ Valencia, Ctr Mixto CSIC, Dept Fis Teor, E-46100 Burjassot, Valencia, Spain, Email: baker.michael.james@googlemail.com;  
  Corporate Author Thesis  
  Publisher Springer Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1029-8479 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000339422800001 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 1846  
Permanent link to this record
 

 
Author Bordes, J.; Dominguez, C.A.; Moodley, P.; Peñarrocha, J.; Schilcher, K. url  doi
openurl 
  Title Corrections to the SU(3) x SU(3) Gell-Mann-Oakes-Renner relation and chiral couplings L-8(r) and H-r(2) Type Journal Article
  Year 2012 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.  
  Volume (up) 10 Issue 10 Pages 102 - 11pp  
  Keywords Sum Rules; QCD  
  Abstract Next to leading order corrections to the SU(3) x SU(3) Gell-Mann-OakesRenner relation (GMOR) are obtained using weighted QCD Finite Energy Sum Rules (FESR) involving the pseudoscalar current correlator. Two types of integration kernels in the FESR are used to suppress the contribution of the kaon radial excitations to the hadronic spectral function, one with local and the other with global constraints. The result for the pseudoscalar current correlator at zero momentum is psi(5)(0) = (2.8 +/- 0.3) x 10(-3) GeV4, leading to the chiral corrections to GMOR: delta(K) = (55 +/- 5)%. The resulting uncertainties are mostly due to variations in the upper limit of integration in the FESR, within the stability regions, and to a much lesser extent due to the uncertainties in the strong coupling and the strange quark mass. Higher order quark mass corrections, vacuum condensates, and the hadronic resonance sector play a negligible role in this determination. These results confirm an independent determination from chiral perturbation theory giving also very large corrections, i.e. roughly an order of magnitude larger than the corresponding corrections in chiral SU(2) x SU(2). Combining these results with our previous determination of the corrections to GMOR in chiral SU(2) x SU(2), delta(pi), we are able to determine two low energy constants of chiral perturbation theory, i.e. L-8(r) = (1.0 +/- 0.3) x 10(-3), and H-2(r) = -(4.7 +/- 0.6) x 10(-3), both at the scale of the rho-meson mass.  
  Address [Bordes, J.; Penarrocha, J.] Univ Valencia, Dept Fis Teor, Valencia, Spain, Email: Jose.M.Bordes@uv.es;  
  Corporate Author Thesis  
  Publisher Springer Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1126-6708 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000310851600031 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 1257  
Permanent link to this record
 

 
Author Bordes, J.; Chan, H.M.; Tsun, T.S. url  doi
openurl 
  Title A solution to the strong CP problem transforming the theta angle to the KM CP-violating phase Type Journal Article
  Year 2010 Publication International Journal of Modern Physics A Abbreviated Journal Int. J. Mod. Phys. A  
  Volume (up) 25 Issue 32 Pages 5897-5911  
  Keywords Strong CP phase; CKM matrix; CP violation  
  Abstract It is shown that in the scheme with a rotating fermion mass matrix (i.e. one with a scale-dependent orientation in generation space) suggested earlier for explaining fermion mixing and mass hierarchy, the theta angle term in the QCD action of topological origin can be eliminated by chiral transformations, while giving still nonzero masses to all quarks. Instead, the effects of such transformations get transmitted by the rotation to the CKM matrix as the KM phase giving, for theta of order unity, a Jarlskog invariant typically of order 10(-5), as experimentally observed. Strong and weak CP violations appear then as just two facets of the same phenomenon.  
  Address [Bordes, Jose] Univ Valencia, Ctr Mixto CSIC, Dept Fis Teor, E-46100 Burjassot, Valencia, Spain, Email: jose.m.bordes@uv.es  
  Corporate Author Thesis  
  Publisher World Scientific Publ Co Pte Ltd Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0217-751x ISBN Medium  
  Area Expedition Conference  
  Notes ISI:000288429300006 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 536  
Permanent link to this record
 

 
Author Baker, M.J.; Bordes, J.; Hong-Mo, C.; Tsun, T.S. url  doi
openurl 
  Title Mass Hierarchy, Mixing, CP-Violation And Higgs Decay – Or Why Rotation Is Good For Us Type Journal Article
  Year 2011 Publication International Journal of Modern Physics A Abbreviated Journal Int. J. Mod. Phys. A  
  Volume (up) 26 Issue 13 Pages 2087-2124  
  Keywords Quark and lepton mixing; mass hierarchy; CP violation; rotation  
  Abstract The idea of a rank-one rotating mass matrix (R2M2) is reviewed detailing how it leads to ready explanations both for the fermion mass hierarchy and for the distinctive mixing patterns between up and down fermion states, which can be and have been tested against experiment and shown to be fully consistent with existing data. Further, R2M2 is seen to offer, as by-products: (i) a new solution to the strong CP problem in QCD by linking the theta-angle there to the Kobayashi-Maskawa CP-violating phase in the CKM matrix, and (ii) some novel predictions of possible anomalies in Higgs decay observable in principle at the LHC. A special effort is made to answer some questions raised.  
  Address [Baker, Michael J.; Tsun, Tsou Sheung] Univ Oxford, Inst Math, Oxford OX1 3LB, England, Email: bakerm@maths.ox.ac.uk  
  Corporate Author Thesis  
  Publisher World Scientific Publ Co Pte Ltd Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0217-751x ISBN Medium  
  Area Expedition Conference  
  Notes ISI:000291219600001 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ elepoucu @ Serial 643  
Permanent link to this record
 

 
Author Baker, M.J.; Bordes, J.; Hong-Mo, C.; Tsun, T.S. url  doi
openurl 
  Title Developing the Framed Standard Model Type Journal Article
  Year 2012 Publication International Journal of Modern Physics A Abbreviated Journal Int. J. Mod. Phys. A  
  Volume (up) 27 Issue 17 Pages 1250087 - 45pp  
  Keywords Quantum field theory; CP violation; mixing and fermion masses  
  Abstract The framed standard model (FSM) suggested earlier, which incorporates the Higgs field and three fermion generations as part of the framed gauge theory (FGT) structure, is here developed further to show that it gives both quarks and leptons hierarchical masses and mixing matrices akin to what is experimentally observed. Among its many distinguishing features which lead to the above results are (i) the vacuum is degenerate under a global su(3) symmetry which plays the role of fermion generations, (ii) the fermion mass matrix is “universal,” rank-one and rotates (changes its orientation in generation space) with changing scale mu, (iii) the metric in generation space is scale-dependent too, and in general nonflat, (iv) the theta-angle term in the quantum chromodynamics (QCD) action of topological origin gets transformed into the CP-violating phase of the Cabibbo-Kobayashi-Maskawa (CKM) matrix for quarks, thus offering at the same time a solution to the strong CP problem.  
  Address [Baker, Michael J.; Bordes, Jose] Univ Valencia, Ctr Mixto CSIC, Dept Fis Teor, E-46100 Burjassot, Valencia, Spain, Email: michael.baker@uv.es;  
  Corporate Author Thesis  
  Publisher World Scientific Publ Co Pte Ltd Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0217-751x ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000305621900002 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 1061  
Permanent link to this record
 

 
Author Baker, M.J.; Bordes, J.; Hong-Mo, C.; Tsun, T.S. url  doi
openurl 
  Title A comprehensive mechanism reproducing the mass and mixing parameters of quarks and leptons Type Journal Article
  Year 2013 Publication International Journal of Modern Physics A Abbreviated Journal Int. J. Mod. Phys. A  
  Volume (up) 28 Issue 16 Pages 1350070 - 29pp  
  Keywords CP phase; CKM matrix; PMNS matrix; fermion masses  
  Abstract It is shown that if, from the starting point of a universal rank-one mass matrix long favored by phenomenologists, one adds the assumption that it rotates (changes its orientation in generation space) with changing scale, one can reproduce, in terms of only six real parameters, all the 16 mass ratios and mixing parameters of quarks and leptons. Of these 16 quantities so reproduced, 10 for which data exist for direct comparison (i.e. the CKM elements including the CP-violating phase, the angles theta(12), theta(13), theta(23) in nu-oscillation, and the masses m(c), m(mu), m(e)) agree well with experiment, mostly to within experimental errors; four others (m(s), m(u), m(d), m(nu 2)), the experimental values for which can only be inferred, agree reasonably well; while two others (m(nu 1), delta(CP) for leptons), not yet measured experimentally, remain as predictions. In addition, one gets as bonuses, estimates for (i) the right-handed neutrino mass m(nu R) and (ii) the strong CP angle theta inherent in QCD. One notes in particular that the output value for sin(2) 2 theta(13) from the fit agrees very well with recent experiments. By inputting the current experimental value with its error, one obtains further from the fit two new testable constraints: (i) that theta(23) must depart from its “maximal” value: sin(2) 2 theta(23) similar to 0.935 +/- 0.021, (ii) that the CP-violating (Dirac) phase in the PMNS would be smaller than in the CKM matrix: of order only vertical bar sin delta(CP)vertical bar <= 0.31 if not vanishing altogether.  
  Address [Baker, Michael J.; Bordes, Jose] Univ Valencia, Dept Fis Teor, E-46100 Burjassot, Valencia, Spain, Email: michael.baker@uv.es;  
  Corporate Author Thesis  
  Publisher World Scientific Publ Co Pte Ltd Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0217-751x ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000321062900008 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 1482  
Permanent link to this record
 

 
Author Bordes, J.; Hong-Mo, C.; Tsun, T.S. url  doi
openurl 
  Title A first test of the framed standard model against experiment Type Journal Article
  Year 2015 Publication International Journal of Modern Physics A Abbreviated Journal Int. J. Mod. Phys. A  
  Volume (up) 30 Issue 11 Pages 1550051 - 34pp  
  Keywords Higgs boson; fermion generations; mixing and neutrino oscillations; mass hierarchy; vielbeins  
  Abstract The framed standard model (FSM) is obtained from the standard model by incorporating, as field variables, the frame vectors (vielbeins) in internal symmetry space. It gives the standard Higgs boson and 3 generations of quarks and leptons as immediate consequences. It gives moreover a fermion mass matrix of the form: m = mT alpha alpha dagger, where alpha is a vector in generation space independent of the fermion species and rotating with changing scale, which has already been shown to lead, generically, to up-down mixing, neutrino oscillations and mass hierarchy. In this paper, pushing the FSM further, one first derives to 1-loop order the RGE for the rotation of alpha, and then applies it to fit mass and mixing data as a first test of the model. With 7 real adjustable parameters, 18 measured quantities are fitted, most (12) to within experimental error or to better than 0.5 percent, and the rest (6) not far off. (A summary of this fit can be found in Table 2 of this paper.) Two notable features, both generic to FSM, not just specific to the fit, are: (i) that a theta-angle of order unity in the instanton term in QCD would translate via rotation into a Kobayashi-Maskawa phase in the CKM matrix of about the observed magnitude (J similar to 10(-5)), (ii) that it would come out correctly that m(u) < m(d), despite the fact that m(t) >> m(b), m(c) >> m(s). Of the 18 quantities fitted, 12 are deemed independent in the usual formulation of the standard model. In fact, the fit gives a total of 17 independent parameters of the standard model, but 5 of these have not been measured by experiment.  
  Address [Bordes, Jose] Univ Valencia, Dept Fis Teor, E-46100 Burjassot, Valencia, Spain, Email: jose.m.bordes@uv.es;  
  Corporate Author Thesis  
  Publisher World Scientific Publ Co Pte Ltd Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0217-751x ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000352992800009 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 2187  
Permanent link to this record
 

 
Author Bordes, J.; Hong-Mo, C.; Tsun, T.S. url  doi
openurl 
  Title The Z boson in the framed standard model Type Journal Article
  Year 2018 Publication International Journal of Modern Physics A Abbreviated Journal Int. J. Mod. Phys. A  
  Volume (up) 33 Issue 32 Pages 1850190 - 19pp  
  Keywords Beyond the Standard Model; Z mixing; mass and decay of the electroweak gauge bosons; LHC phenomenology  
  Abstract The framed standard model (FSM), constructed initially for explaining the existence of three fermion generations and the hierarchical mass and mixing patterns of quarks and leptons,(1,2) suggests also a “hidden sector” of particles(3) including some dark matter candidates. It predicts in addition a new vector boson G, with mass of order TeV, which mixes with the gamma and Z of the standard model yielding deviations from the standard mixing scheme, all calculable in terms of a single unknown parameter mG. Given that standard mixing has been tested already to great accuracy by experiment, this could lead to contradictions, but it is shown here that for the three crucial and testable cases so far studied (i) m(Z) – m(W), (ii) Gamma(Z -> l(+)l(-)), (iii) Gamma(Z -> hadrons), the deviations are all within the present stringent experimental bounds provided m(G) > 1 TeV, but should soon be detectable if experimental accuracy improves. This comes about because of some subtle cancellations, which might have a deeper reason that is not yet understood. By virtue of mixing, G can be produced at the LHC and appear as a l(+)l(-) anomaly. If found, it will be of interest not only for its own sake but serve also as a window on to the “hidden sector” into which it will mostly decay, with dark matter candidates as most likely products.  
  Address [Bordes, Jose] Univ Valencia, Ctr Mixto CSIC, Dept Fis Teor, Calle Dr Moliner 50, E-46100 Burjassot, Valencia, Spain, Email: bordes@uv.es;  
  Corporate Author Thesis  
  Publisher World Scientific Publ Co Pte Ltd Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0217-751x ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000451433900008 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 3821  
Permanent link to this record
 

 
Author Bordes, J.; Chan, H.M.; Tsun, S.S. url  doi
openurl 
  Title A closer study of the framed standard model yielding testable new physics plus a hidden sector with dark matter candidates Type Journal Article
  Year 2018 Publication International Journal of Modern Physics A Abbreviated Journal Int. J. Mod. Phys. A  
  Volume (up) 33 Issue 33 Pages 1850195 - 75pp  
  Keywords Gauge field theories; beyond the standard model; composite models; mass and mixing of fermions; dark matter  
  Abstract This closer study of the FSM (1) retains the earlier results of Ref. 1 in offering explanation for the existence of three fermion generations, as well as the hierarchical mass and mixing patterns of leptons and quarks; (II) predicts a vector boson G with mass of order TeV which mixes gamma with and Z of the standard model. The subsequent deviations from the standard mixing scheme are calculable in terms of the G mass. While these deviations for (i) mz – mw, (ii) Gamma(Z -> l (+)l( -)), and (iii) F(Z -> hadrons) are all within present experimental errors so long as mG > 1 TeV, they should soon be detectable if the G mass is not too much bigger; (III) suggests that in parallel to the standard sector familiar to us, there is another where the roles of flavour and colour are interchanged. Though quite as copiously populated and as vibrant in self-interactions as our own, it communicates but little with the standard sector except via mixing through a couple of known portals, one of which is the gamma – Z – G complex noted in (II), and the other is a scalar complex which includes the standard model Higgs. As a result, the new sectors paper. appears hidden to us as we appear hidden to them, and so its lowest members with masses of order 10 MeV, being electrically neutral and seemingly stable, but abundant, may make eligible candidates as constituents of dark matter. A more detailed summary of these results together with some remarks on the model's special theoretical features can be found in the last section of this paper.  
  Address [Bordes, Jose] Univ Valencia, CSIC, Ctr Mixto, Dept Fis Teor, Calle Dr Moliner 50, E-46100 Burjassot, Valencia, Spain, Email: bordes@uv.es;  
  Corporate Author Thesis  
  Publisher World Scientific Publ Co Pte Ltd Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0217-751x ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000453027500004 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 3844  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records:
ific federMinisterio de Ciencia e InnovaciĆ³nAgencia Estatal de Investigaciongva