|   | 
Details
   web
Records
Author Guo, J.J.; Sun, F.X.; Zhu, D.Q.; Gessner, M.; He, Q.Y.; Fadel, M.
Title Detecting Einstein-Podolsky-Rosen steering in non-Gaussian spin states from conditional spin-squeezing parameters Type Journal Article
Year 2023 Publication Physical Review A Abbreviated Journal Phys. Rev. A
Volume (down) 108 Issue 1 Pages 012435 - 7pp
Keywords
Abstract We present an experimentally practical method to reveal Einstein-Podolsky-Rosen (EPR) steering in non-Gaussian spin states by exploiting a connection to quantum metrology. Our criterion is based on the quantum Fisher information, and uses bounds derived from generalized spin-squeezing parameters that involve measurements of higher-order moments. This leads us to introduce the concept of conditional spin-squeezing parameters, which quantify the metrological advantage provided by conditional states, as well as detect the presence of an EPR paradox.
Address [Guo, Jiajie; Sun, Feng-Xiao; Zhu, Daoquan; He, Qiongyi] Peking Univ, State Key Lab Mesoscop Phys, Sch Phys, Frontiers Sci Ctr Nanooptoelect, Beijing 100871, Peoples R China, Email: manuel.gessner@uv.es;
Corporate Author Thesis
Publisher Amer Physical Soc Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2469-9926 ISBN Medium
Area Expedition Conference
Notes WOS:001130449100004 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 5905
Permanent link to this record
 

 
Author Arnault, P.; Pepper, B.; Perez, A.
Title Quantum walks in weak electric fields and Bloch oscillations Type Journal Article
Year 2020 Publication Physical Review A Abbreviated Journal Phys. Rev. A
Volume (down) 101 Issue 6 Pages 062324 - 12pp
Keywords
Abstract Bloch oscillations appear when an electric field is superimposed on a quantum particle that evolves on a lattice with a tight-binding Hamiltonian (TBH), i.e., evolves via what we call an electric TBH; this phenomenon will be referred to as TBH Bloch oscillations. A similar phenomenon is known to show up in so-called electric discrete-time quantum walks (DQWs) [C. Cedzich et al., Phys. Rev. Lett. 111, 160601 (2013);] this phenomenon will be referred to as DQW Bloch oscillations. This similarity is particularly salient when the electric field of the DQW is weak. For a wide, i.e., spatially extended, initial condition, one numerically observes semiclassical oscillations, i.e., oscillations of a localized particle, for both the electric TBH and the electric DQW. More precisely, the numerical simulations strongly suggest that the semiclassical DQW Bloch oscillations correspond to two counterpropagating semiclassical TBH Bloch oscillations. In this work it is shown that, under certain assumptions, the solution of the electric DQW for a weak electric field and a wide initial condition is well approximated by the superposition of two continuous-time expressions, which are counterpropagating solutions of an electric TBH whose hopping amplitude is the cosine of the arbitrary coin-operator mixing angle. In contrast, if one wishes the continuous-time approximation to hold for spatially localized initial conditions, one needs at least the DQW to be lazy, as suggested by numerical simulations and by the fact that this has been proven in the case of a vanishing electric field [F. W. Strauch, Phys. Rev. A 74, 030301(R) (2006)].
Address [Arnault, Pablo; Pepper, Benjamin; Perez, A.] Univ Valencia, CSIC, Dept Fis Teor, Cerrer Dr Moliner 50, Burjassot 46100, Spain, Email: pablo.arnault@ific.uv.es;
Corporate Author Thesis
Publisher Amer Physical Soc Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1050-2947 ISBN Medium
Area Expedition Conference
Notes WOS:000541400900002 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 4431
Permanent link to this record
 

 
Author Arnault, P.; Perez, A.; Arrighi, P.; Farrelly, T.
Title Discrete-time quantum walks as fermions of lattice gauge theory Type Journal Article
Year 2019 Publication Physical Review A Abbreviated Journal Phys. Rev. A
Volume (down) 99 Issue 3 Pages 032110 - 16pp
Keywords
Abstract It is shown that discrete-time quantum walks can be used to digitize, i.e., to time discretize fermionic models of continuous-time lattice gauge theory. The resulting discrete-time dynamics is thus not only manifestly unitary, but also ultralocal, i.e., the particle's speed is upper bounded, as in standard relativistic quantum field theories. The lattice chiral symmetry of staggered fermions, which corresponds to a translational invariance, is lost after the requirement of ultralocality of the evolution; this fact is an instance of Meyer's 1996 no-go results stating that no nontrivial scalar quantum cellular automaton can be translationally invariant [D. A. Meyer, J. Stat. Phys. 85, 551 (1996); Phys. Lett. A 223, 337 (1996)]. All results are presented in a single-particle framework and for a (1+1)-dimensional space-time.
Address [Arnault, Pablo; Perez, Armando] Univ Valencia, Dept Fis Teor, Dr Moliner 50, E-46100 Burjassot, Spain, Email: pablo.arnault@ific.uv.es
Corporate Author Thesis
Publisher Amer Physical Soc Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2469-9926 ISBN Medium
Area Expedition Conference
Notes WOS:000461896700002 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 3950
Permanent link to this record
 

 
Author Marquez-Martin, I.; Arnault, P.; Di Molfetta, G.; Perez, A.
Title Electromagnetic lattice gauge invariance in two-dimensional discrete-time quantum walks Type Journal Article
Year 2018 Publication Physical Review A Abbreviated Journal Phys. Rev. A
Volume (down) 98 Issue 3 Pages 032333 - 8pp
Keywords
Abstract Gauge invariance is one of the more important concepts in physics. We discuss this concept in connection with the unitary evolution of discrete-time quantum walks in one and two spatial dimensions, when they include the interaction with synthetic, external electromagnetic fields. One introduces this interaction as additional phases that play the role of gauge fields. Here, we present a way to incorporate those phases, which differs from previous works. Our proposal allows the discrete derivatives, that appear under a gauge transformation, to treat time and space on the same footing, in a way which is similar to standard lattice gauge theories. By considering two steps of the evolution, we define a density current which is gauge invariant and conserved. In the continuum limit, the dynamics of the particle, under a suitable choice of the parameters, becomes the Dirac equation and the conserved current satisfies the corresponding conservation equation.
Address [Marquez-Martin, Ivan; Arnault, Pablo; Di Molfetta, Giuseppe; Perez, Armando] Univ Valencia, Dept Fis Teor, Dr Moliner 50, E-46100 Burjassot, Spain, Email: ivan.marquez@uv.es;
Corporate Author Thesis
Publisher Amer Physical Soc Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2469-9926 ISBN Medium
Area Expedition Conference
Notes WOS:000446163200006 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 3750
Permanent link to this record
 

 
Author Martone, G.I.; Larre, P.E.; Fabbri, A.; Pavloff, N.
Title Momentum distribution and coherence of a weakly interacting Bose gas after a quench Type Journal Article
Year 2018 Publication Physical Review A Abbreviated Journal Phys. Rev. A
Volume (down) 98 Issue 6 Pages 063617 - 21pp
Keywords
Abstract We consider a weakly interacting uniform atomic Bose gas with a time-dependent nonlinear coupling constant. By developing a suitable Bogoliubov treatment we investigate the time evolution of several observables, including the momentum distribution, the degree of coherence in the system, and their dependence on dimensionality and temperature. We rigorously prove that the low-momentum Bogoliubov modes remain frozen during the whole evolution, while the high-momentum ones adiabatically follow the change in time of the interaction strength. At intermediate momenta we point out the occurrence of oscillations, which are analogous to Sakharov oscillations. We identify two wide classes of time-dependent behaviors of the coupling for which an exact solution of the problem can be found, allowing for an analytic computation of all the relevant observables. A special emphasis is put on the study of the coherence property of the system in one spatial dimension. We show that the system exhibits a smooth “light-cone effect,” with typically no prethermalization.
Address [Martone, Giovanni I.; Pavloff, Nicolas] Univ Paris Saclay, Univ Paris Sud, CNRS, LPTMS,UMR 8626, F-91405 Orsay, France
Corporate Author Thesis
Publisher Amer Physical Soc Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2469-9926 ISBN Medium
Area Expedition Conference
Notes WOS:000452949900009 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 3841
Permanent link to this record