|   | 
Details
   web
Records
Author Binosi, D.; Chang, L.; Ding, M.H.; Gao, F.; Papavassiliou, J.; Roberts, C.D.
Title Distribution amplitudes of heavy-light mesons Type Journal Article
Year 2019 Publication Physics Letters B Abbreviated Journal Phys. Lett. B
Volume (down) 790 Issue Pages 257-262
Keywords B-meson decays; Heavy-light mesons; Nonperturbative continuum methods in quantum field theory; Parton distribution amplitudes; Quantum chromodynamics
Abstract A symmetry-preserving approach to the continuum bound-state problem in quantum field theory is used to calculate the masses, leptonic decay constants and light-front distribution amplitudes of empirically accessible heavy-light mesons. The inverse moment of the B-meson distribution is particularly important in treatments of exclusive B-decays using effective field theory and the factorisation formalism; and its value is therefore computed: lambda(B) = (zeta = 2GeV) = 0.54(3) GeV. As an example and in anticipation of precision measurements at new-generation B-factories, the branching fraction for the rare B -> gamma (E-gamma)l nu(l) radiative decay is also calculated, retaining 1/m(B)(2), and 1/E-gamma(2) corrections to the differential decay width, with the result Gamma(B -> gamma l nu l) /Gamma(B) = 0.47 (15) on E-gamma > 1.5 GeV.
Address [Binosi, Daniele; Ding, Minghui] European Ctr Theoret Studies Nucl Phys & Related, Str Tabarelle 286, I-38123 Villazzano, TN, Italy, Email: binosi@ectstar.eu;
Corporate Author Thesis
Publisher Elsevier Science Bv Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0370-2693 ISBN Medium
Area Expedition Conference
Notes WOS:000460118200030 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 3934
Permanent link to this record
 

 
Author Athenodorou, A.; Binosi, D.; Boucaud, P.; De Soto, F.; Papavassiliou, J.; Rodriguez-Quintero, J.; Zafeiropoulos, S.
Title On the zero crossing of the three-gluon vertex Type Journal Article
Year 2016 Publication Physics Letters B Abbreviated Journal Phys. Lett. B
Volume (down) 761 Issue Pages 444-449
Keywords Lattice simulations; Three-gluon vertex; Zero crossing; Schwinger-Dyson equations
Abstract We report on new results on the infrared behavior of the three-gluon vertex in quenched Quantum Chromodynamics, obtained from large-volume lattice simulations. The main focus of our study is the appearance of the characteristic infrared feature known as 'zero crossing', the origin of which is intimately connected with the nonperturbative masslessness of the Faddeev-Popov ghost. The appearance of this effect is clearly visible in one of the two kinematic configurations analyzed, and its theoretical origin is discussed in the framework of Schwinger-Dyson equations. The effective coupling in the momentum subtraction scheme that corresponds to the three-gluon vertex is constructed, revealing the vanishing of the effective interaction at the exact location of the zero crossing.
Address [Athenodorou, A.] Univ Cyprus, Dept Phys, POB 20537, CY-1678 Nicosia, Cyprus, Email: binosi@ectstar.eu
Corporate Author Thesis
Publisher Elsevier Science Bv Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0370-2693 ISBN Medium
Area Expedition Conference
Notes WOS:000384469900063 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 2939
Permanent link to this record
 

 
Author Binosi, D.; Chang, L.; Papavassiliou, J.; Roberts, C.D.
Title Bridging a gap between continuum-QCD and ab initio predictions of hadron observables Type Journal Article
Year 2015 Publication Physics Letters B Abbreviated Journal Phys. Lett. B
Volume (down) 742 Issue Pages 183-188
Keywords Dyson-Schwinger equations; Confinement; Dynamical chiral symmetry breaking; Fragmentation; Gribov copies
Abstract Within contemporary hadron physics there are two common methods for determining the momentum-dependence of the interaction between quarks: the top-down approach, which works toward an ab initio computation of the interaction via direct analysis of the gauge-sector gap equations; and the bottom-up scheme, which aims to infer the interaction by fitting data within a well-defined truncation of those equations in the matter sector that are relevant to bound-state properties. We unite these two approaches by demonstrating that the renormalisation-group-invariant running-interaction predicted by contemporary analyses of QCD's gauge sector coincides with that required in order to describe ground-state hadron observables using a nonperturbative truncation of QCD's Dyson-Schwinger equations in the matter sector. This bridges a gap that had lain between nonperturbative continuum-QCD and the ab initioprediction of bound-state properties.
Address [Binosi, Daniele] European Ctr Theoret Studies Nucl Phys & Related, I-38123 Villazzano, TN, Italy, Email: cdroberts@anl.gov
Corporate Author Thesis
Publisher Elsevier Science Bv Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0370-2693 ISBN Medium
Area Expedition Conference
Notes WOS:000350555900026 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 2156
Permanent link to this record
 

 
Author Binosi, D.; Papavassiliou, J.
Title Coupled dynamics in gluon mass generation and the impact of the three-gluon vertex Type Journal Article
Year 2018 Publication Physical Review D Abbreviated Journal Phys. Rev. D
Volume (down) 97 Issue 5 Pages 054029 - 15pp
Keywords
Abstract We present a detailed study of the subtle interplay transpiring at the level of two integral equations that are instrumental for the dynamical generation of a gluon mass in pure Yang-Mills theories. The main novelty is the joint treatment of the Schwinger-Dyson equation governing the infrared behavior of the gluon propagator and of the integral equation that controls the formation of massless bound-state excitations, whose inclusion is instrumental for obtaining massive solutions from the former equation. The self-consistency of the entire approach imposes the requirement of using a single value for the gauge coupling entering in the two key equations; its fulfilment depends crucially on the details of the three-gluon vertex, which contributes to both of them, but with different weight. In particular, the characteristic suppression of this vertex at intermediate and low energies enables the convergence of the iteration procedure to a single gauge coupling, whose value is reasonably close to that extracted from related lattice simulations.
Address [Binosi, Daniele] European Ctr Theoret Studies Nucl Phys & Related, Str Tabarelle 286, I-38123 Villazzano, Trento, Italy
Corporate Author Thesis
Publisher Amer Physical Soc Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2470-0010 ISBN Medium
Area Expedition Conference
Notes WOS:000428240900006 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 3535
Permanent link to this record
 

 
Author Binosi, D.; Mezrag, C.; Papavassiliou, J.; Roberts, C.D.; Rodriguez-Quintero, J.
Title Process-independent strong running coupling Type Journal Article
Year 2017 Publication Physical Review D Abbreviated Journal Phys. Rev. D
Volume (down) 96 Issue 5 Pages 054026 - 7pp
Keywords
Abstract We unify two widely different approaches to understanding the infrared behavior of quantum chromodynamics (QCD), one essentially phenomenological, based on data, and the other computational, realized via quantum field equations in the continuum theory. Using the latter, we explain and calculate a process-independent running coupling for QCD, a new type of effective charge that is an analogue of the Gell-Mann-Low effective coupling in quantum electrodynamics. The result is almost identical to the process-dependent effective charge defined via the Bjorken sum rule, which provides one of the most basic constraints on our knowledge of nucleon spin structure. This reveals the Bjorken sum to be a near direct means by which to gain empirical insight into QCD's Gell-Mann-Low effective charge.
Address [Binosi, Daniele] European Ctr Theoret Studies Nucl Phys & Related, Str Tabarelle 286, I-38123 Villazzano, Trentino, Italy
Corporate Author Thesis
Publisher Amer Physical Soc Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2470-0010 ISBN Medium
Area Expedition Conference
Notes WOS:000411579700005 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 3317
Permanent link to this record