Jiang, J. Q., Giare, W., Garzai, S., Dainotti, M. G., Di Valentino, E., Mena, O., et al. (2025). Neutrino cosmology after DESI: tightest mass upper limits, preference for the normal ordering, and tension with terrestrial observations. J. Cosmol. Astropart. Phys., 01(1), 153–43pp.
Abstract: The recent DESI Baryon Acoustic Oscillation measurements have led to tight upper limits on the neutrino mass sum, potentially in tension with oscillation constraints requiring Sigma m(nu) greater than or similar to 0.06 eV. Under the physically motivated assumption of positive Sigma m(nu), we study the extent to which these limits are tightened by adding other available cosmological probes, and robustly quantify the preference for the normal mass ordering over the inverted one, as well as the tension between cosmological and terrestrial data. Combining DESI data with Cosmic Microwave Background measurements and several late-time background probes, the tightest 2 sigma limit we find without including a local H-0 prior is Sigma m(nu) < 0.05 eV. This leads to a strong preference for the normal ordering, with Bayes factor relative to the inverted one of 46.5. Depending on the dataset combination and tension metric adopted, we quantify the tension between cosmological and terrestrial observations as ranging between 2.5 sigma and 5 sigma. These results are strenghtened when allowing for a time-varying dark energy component with equation of state lying in the physically motivated non-phantom regime, w(z) >= -1, highlighting an interesting synergy between the nature of dark energy and laboratory probes of the mass ordering. If these tensions persist and cannot be attributed to systematics, either or both standard neutrino (particle) physics or the underlying cosmological model will have to be questioned.
|
de Putter, R., Verde, L., & Jimenez, R. (2013). Testing LTB void models without the cosmic microwave background or large scale structure: new constraints from galaxy ages. J. Cosmol. Astropart. Phys., 02(2), 047–22pp.
Abstract: We present new observational constraints on inhomogenous models based on observables independent of the CMB and large-scale structure. Using Bayesian evidence we find very strong evidence for homogeneous LCDM model, thus disfavouring inhomogeneous models. Our new constraints are based on quantities independent of the growth of perturbations and rely on cosmic clocks based on atomic physics and on the local density of matter.
|
Barenboim, G., Fernandez-Martinez, E., Mena, O., & Verde, L. (2010). The dark side of curvature. J. Cosmol. Astropart. Phys., 03(3), 008–17pp.
Abstract: Geometrical tests such as the combination of the Hubble parameter H(z) and the angular diameter distance d(A)(z) can, in principle, break the degeneracy between the dark energy equation of state parameter w(z), and the spatial curvature Omega(k) in a direct, model-independent way. In practice, constraints on these quantities achievable from realistic experiments, such as those to be provided by Baryon Acoustic Oscillation (BAO) galaxy surveys in combination with CMB data, can resolve the cosmic confusion between the dark energy equation of state parameter and curvature only statistically and within a parameterized model for w(z). Combining measurements of both H(z) and d(A)(z) up to sufficiently high redshifts z similar to 2 and employing a parameterization of the redshift evolution of the dark energy equation of state are the keys to resolve the w(z) – Omega(k) degeneracy.
|
Berbig, M. (2025). Kick it like DESI: PNGB quintessence with a dynamically generated initial velocity. J. Cosmol. Astropart. Phys., 03(3), 015–46pp.
Abstract: Motivated by the hint for time-dependent dynamical dark energy from an analysis of the DESI Baryon Accoustic Oscillation (BAO) data together with information from the Cosmic Microwave Background (CMB) and Supernovae (SN), we relax the assumption of a vanishing initial velocity for a quintessence field. In particular we focus on pseudo-NambuGoldstone-Boson (PNGB) quintessence in the form of an axion like particle, that can arise as the phase of a complex scalar and could possess derivative couplings to fermions or topological couplings to abelian gauge fields, without upsetting the necessary flatness of its potential. We discuss mechanisms from the aforementioned interactions for sourcing an initial axion field velocity theta(center dot)i at redshifts 3 <= z <= 10, that will “kick” it into motion. Driven by this initial velocity the axion will first roll up in its potential, similar to “freezing” dark energy. After it has reached the pinnacle of its trajectory, it will start to roll down, and behave as “thawing” quintessence. As a proof of concept we undertake a combined fit to BAO, SN and CMB data at the background level. We find that a scenario with theta(center dot)i = O (1) ma, where ma is the axion mass, is slightly preferred over both Lambda CDM and the conventional “thawing” quintessence with theta(center dot)i = 0. The best fit points for this case exhibit transplanckian decay constants and very flat potentials, which both are in tension with conjectures from string theory.
|
Capozziello, S., Harko, T., Koivisto, T. S., Lobo, F. S. N., & Olmo, G. J. (2013). Cosmology of hybrid metric-Palatini f(X)-gravity. J. Cosmol. Astropart. Phys., 04(4), 011–25pp.
Abstract: A new class of modified theories of gravity, consisting of the superposition of the metric Einstein-Hilbert Lagrangian with an f(R) term constructed a la Palatini was proposed recently. The dynamically equivalent scalar-tensor representation of the model was also formulated, and it was shown that even if the scalar field is very light, the theory passes the Solar System observational constraints. Therefore the model predicts the existence of a long-range scalar field, modifying the cosmological and galactic dynamics. An explicit model that passes the local tests and leads to cosmic acceleration was also obtained. In the present work, it is shown that the theory can be also formulated in terms of the quantity X equivalent to kappa T-2 + R, where T and R are the traces of the stress-energy and Ricci tensors, respectively. The variable X represents the deviation with respect to the field equation trace of general relativity. The cosmological applications of this hybrid metric-Palatini gravitational theory are also explored, and cosmological solutions coming from the scalar-tensor representation of f(X)-gravity are presented. Criteria to obtain cosmic acceleration are discussed and the field equations are analyzed as a dynamical system. Several classes of dynamical cosmological solutions, depending on the functional form of the effective scalar field potential, describing both accelerating and decelerating Universes are explicitly obtained. Furthermore, the cosmological perturbation equations are derived and applied to uncover the nature of the propagating scalar degree of freedom and the signatures these models predict in the large-scale structure.
|
Forconi, M., Giare, W., Mena, O., Ruchika, Di Valentino, E., Melchiorri, A., et al. (2024). A double take on early and interacting dark energy from JWST. J. Cosmol. Astropart. Phys., 05(5), 097–37pp.
Abstract: The very first light captured by the James Webb Space Telescope (JWST) revealed a population of galaxies at very high redshifts more massive than expected in the canonical Lambda CDM model of structure formation. Barring, among others, a systematic origin of the issue, in this paper, we test alternative cosmological perturbation histories. We argue that models with a larger matter component ohm m and/or a larger scalar spectral index n s can substantially improve the fit to JWST measurements. In this regard, phenomenological extensions related to the dark energy sector of the theory are appealing alternatives, with Early Dark Energy emerging as an excellent candidate to explain (at least in part) the unexpected JWST preference for larger stellar mass densities. Conversely, Interacting Dark Energy models, despite producing higher values of matter clustering parameters such as sigma 8 , are generally disfavored by JWST measurements. This is due to the energy -momentum flow from the dark matter to the dark energy sector, implying a smaller matter energy density. Upcoming observations may either strengthen the evidence or falsify some of these appealing phenomenological alternatives to the simplest Lambda CDM picture.
|
Beltran Jimenez, J., Heisenberg, L., & Olmo, G. J. (2015). Tensor perturbations in a general class of Palatini theories. J. Cosmol. Astropart. Phys., 06(6), 026–16pp.
Abstract: We study a general class of gravitational theories formulated in the Palatini approach and derive the equations governing the evolution of tensor perturbations. In the absence of torsion, the connection can be solved as the Christoffel symbols of an auxiliary metric which is non-trivially related to the space-time metric. We then consider background solutions corresponding to a perfect fluid and show that the tensor perturbations equations (including anisotropic stresses) for the auxiliary metric around such a background take an Einstein-like form. This facilitates the study in a homogeneous and isotropic cosmological scenario where we explicitly establish the relation between the auxiliary metric and the spacetime metric tensor perturbations. As a general result, we show that both tensor perturbations coincide in the absence of anisotropic stresses.
|
Di Valentino, E., Gariazzo, S., Mena, O., & Vagnozzi, S. (2020). Soundness of dark energy properties. J. Cosmol. Astropart. Phys., 07(7), 045–45pp.
Abstract: Type Ia Supernovae (SNeIa) used as standardizable candles have been instrumental in the discovery of cosmic acceleration, usually attributed to some form of dark energy (DE). Recent studies have raised the issue of whether intrinsic SNeIa luminosities might evolve with redshift. While the evidence for cosmic acceleration is robust to this possible systematic, the question remains of how much the latter can affect the inferred properties of the DE component responsible for cosmic acceleration. This is the question we address in this work. We use SNeIa distance moduli measurements from the Pantheon and JLA samples. We consider models where the DE equation of state is a free parameter, either constant or time-varying, as well as models where DE and dark matter interact, and finally a model-agnostic parametrization of effects due to modified gravity (MG). When SNeIa data are combined with Cosmic Microwave Background (CMB) temperature and polarization anisotropy measurements, we find strong degeneracies between parameters governing the SNeIa systematics, the DE parameters, and the Hubble constant H-0. These degeneracies significantly broaden the DE parameter uncertainties, in some cases leading to O(sigma) shifts in the central values. However, including low-redshift Baryon Acoustic Oscillation and Cosmic Chronometer measurements, as well as CMB lensing measurements, considerably improves the previous constraints, and the only remaining effect of the examined systematic is a less than or similar to 40% broadening of the uncertainties on the DE parameters. The constraints we derive on the MG parameters are instead basically unaffected by the systematic in question. We therefore confirm the overall soundness of dark energy properties.
|
Zhai, Y. J., Giare, W., van de Bruck, C., Di Valentino, E., Mena, O., & Nunes, R. C. (2023). A consistent view of interacting dark energy from multiple CMB probes. J. Cosmol. Astropart. Phys., 07(7), 032–16pp.
Abstract: We analyze a cosmological model featuring an interaction between dark energy and dark matter in light of the measurements of the Cosmic Microwave Background released by three independent experiments: the most recent data by the Planck satellite and the Atacama Cosmology Telescope, and WMAP (9-year data). We show that different combinations of the datasets provide similar results, always favoring an interacting dark sector with a 95% C.L. significance in the majority of the cases. Remarkably, such a preference remains consistent when cross-checked through independent probes, while always yielding a value of the expansion rate H0 consistent with the local distance ladder measurements. We investigate the source of this preference by scrutinizing the angular power spectra of temperature and polarization anisotropies as measured by different experiments.
|
Adolf, P., Hirsch, M., Krieg, S., Pas, H., & Tabet, M. (2024). Fitting the DESI BAO data with dark energy driven by the Cohen-Kaplan-Nelson bound. J. Cosmol. Astropart. Phys., 08(8), 048–18pp.
Abstract: Gravity constrains the range of validity of quantum field theory. As has been pointed out by Cohen, Kaplan, and Nelson (CKN), such effects lead to interdependent ultraviolet (UV) and infrared (IR) cutoffs that may stabilize the dark energy of the universe against quantum corrections, if the IR cutoff is set by the Hubble horizon. As a consequence of the cosmic expansion, this argument implies a time-dependent dark energy density. In this paper we confront this idea with recent data from DESI BAO, Hubble and supernova measurements. We find that the CKN model provides a better fit to the data than the Lambda CDM model and can compete with other models of time-dependent dark energy that have been studied so far.
|