Singha, M., Yokoyama, R., Grzywacz, R., Keeler, A., King, T. T., Agramunt, J., et al. (2025). YSO implantation detector for beta-delayed neutron spectroscopy. Nucl. Instrum. Methods Phys. Res. A, 1073, 170239–14pp.
Abstract: A segmented-scintillator-based implantation detector was developed to study the energy distribution of /1- delayed neutrons emitted from exotic isotopes. The detector comprises a 34 x 34 YSO scintillator coupled to an 8 x 8 anode Position-Sensitive Photo-Multiplier Tube (PSPMT) via a tapered light guide. The detector was used at RIBF, RIKEN for time-of-flight-based neutron spectroscopy measurement in the 78Ni region. The detector provides the position and timing resolution necessary for ion-beta correlations and time of flight measurements. The detector provides a high similar to 80% beta-detection efficiency and a sub-nanosecond timing resolution. This contribution discusses the details of the design, operation, implementation, and analysis developed to obtain neutron time-of-flight spectrum and the analysis methods in the context of neutron-rich nuclei in the 78Ni region.
|
Yokoyama, R., Singh, M., Grzywacz, R., Keeler, A., King, T. T., Agramunt, J., et al. (2019). Segmented YSO scintillation detectors as a new beta-implant detection tool for decay spectroscopy in fragmentation facilities. Nucl. Instrum. Methods Phys. Res. A, 937, 93–97.
Abstract: A newly developed segmented YSO scintillator detector was implemented for the first time at the RI-beam Factory at RIKEN Nishina Center as an implantation-decay counter. The results from the experiment demonstrate that the detector is a viable alternative to conventional silicon-strip detectors with its good timing resolution and high detection efficiency for beta particles. A Position-Sensitive Photo-Multiplier Tube (PSPMT) is coupled with a 48 x 48 segmented YSO crystal. To demonstrate its capabilities, a known short-lived isomer in Ni-76 and the beta decay of Co-74 were measured by implanting those ions into the YSO detector. The half-lives and gamma-rays observed in this work are consistent with the known values. The beta-ray detection efficiency is more than 80 % for the decay of Co-74.
|
BRIKEN Collaboration(Tolosa-Delgado, A. et al), Agramunt, J., Tain, J. L., Algora, A., Domingo-Pardo, C., Morales, A. I., et al. (2019). Commissioning of the BRIKEN detector for the measurement of very exotic beta-delayed neutron emitters. Nucl. Instrum. Methods Phys. Res. A, 925, 133–147.
Abstract: A new detection system has been installed at the RIKEN Nishina Center (Japan) to investigate decay properties of very neutron-rich nuclei. The setup consists of three main parts: a moderated neutron counter, a detection system sensitive to the implantation and decay of radioactive ions, and gamma-ray detectors. We describe here the setup, the commissioning experiment and some selected results demonstrating its performance for the measurement of half-lives and beta-delayed neutron emission probabilities. The methodology followed in the analysis of the data is described in detail. Particular emphasis is placed on the correction of the accidental neutron background.
|
Rasco, B. C., Brewer, N. T., Yokoyama, R., Grzywacz, R., Rykaczewski, K. P., Tolosa-Delgado, A., et al. (2018). The ORNL analysis technique for extracting beta-delayed multi-neutron branching ratios with BRIKEN. Nucl. Instrum. Methods Phys. Res. A, 911, 79–86.
Abstract: Many choices are available in order to evaluate large radioactive decay networks. There are many parameters that influence the calculated beta-decay delayed single and multi-neutron emission branching fractions. We describe assumptions about the decay model, background, and other parameters and their influence on beta-decay delayed multi-neutron emission analysis. An analysis technique, the ORNL BRIKEN analysis procedure, for determining beta-delayed multi-neutron branching ratios in beta-neutron precursors produced by means of heavy-ion fragmentation is presented. The technique is based on estimating the initial activities of zero, one, and two neutrons occurring in coincidence with an ion-implant and beta trigger. The technique allows one to extract beta-delayed multi-neutron decay branching ratios measured with the He-3 BRIKEN neutron counter. As an example, two analyses of the beta-neutron emitter Cu-77 based on different a priori assumptions are presented along with comparisons to literature values.
|
Hall, O. et al, Agramunt, J., Algora, A., Domingo-Pardo, C., Morales, A. I., Rubio, B., et al. (2021). beta-delayed neutron emission of r-process nuclei at the N=82 shell closure. Phys. Lett. B, 816, 136266–7pp.
Abstract: Theoretical models of beta-delayed neutron emission are used as crucial inputs in r-process calculations. Benchmarking the predictions of these models is a challenge due to a lack of currently available experimental data. In this work the beta-delayed neutron emission probabilities of 33 nuclides in the important mass regions south and south-west of Sn-132 are presented, 16 for the first time. The measurements were performed at RIKEN using the Advanced Implantation Detector Array (AIDA) and the BRIKEN neutron detector array. The P-1n values presented constrain the predictions of theoretical models in the region, affecting the final abundance distribution of the second r-process peak at A approximate to 130.
|
Tolosa-Delgado, A. et al, Tain, J. L., Agramunt, J., Algora, A., Domingo-Pardo, C., Morales, A. I., et al. (2025). Impact of Newly Measured β-Delayed Neutron Emitters around 78Ni on Light Element Nucleosynthesis in the Neutrino Wind Following a Neutron Star Merger. Phys. Rev. Lett., 134(17), 172701–11pp.
Abstract: Neutron emission probabilities and half-lives of 37 /3-delayed neutron emitters from 75Ni to 92Br were measured at the RIKEN Nishina Center in Japan, including 11 one-neutron and 13 two-neutron emission probabilities and six half-lives for the first time that supersede theoretical estimates. These nuclei lie in the path of the weak r process occurring in neutrino-driven winds from the accretion disk formed after the merger of two neutron stars synthesizing elements in the A 80 abundance peak. The presence of such elements dominates the accompanying kilonova emission over the first few days and have been identified in the AT2017gfo event, associated to the gravitational wave detection GW170817. Abundance calculations based on over 17 000 simulated trajectories describing the evolution of matter properties in the merger outflows show that the new data lead to an increase of 50%-70% in the abundance of Y, Zr, Nb, and Mo. This enhancement is large compared to the scatter of relative abundances observed in old very metal poor stars and thus is significant in the comparison with other possible astrophysical processes contributing to the light-element production. These results underline the importance of including experimental decay data for very neutron-rich /3-delayed neutron emitters into r-process models.
|
Phong, V. H. et al, Agramunt, J., Algora, A., Domingo-Pardo, C., Morales, A. I., Rubio, B., et al. (2022). Beta-Delayed One and Two Neutron Emission Probabilities South-East of Sn-132 and the Odd-Even Systematics in r-Process Nuclide Abundances. Phys. Rev. Lett., 129(18), 172701–7pp.
Abstract: The beta-delayed one- and two-neutron emission probabilities (P-1n and P-2n) of 20 neutron-rich nuclei with N >= 82 have been measured at the RIBF facility of the RIKEN Nishina Center. P-1n of Ag-130;131, Cd-133;134, In-135;136, and (138;13)9Sn were determined for the first time, and stringent upper limits were placed on P-2n for nearly all cases. beta-delayed two-neutron emission (beta 2n) was unambiguously identified in Cd-133 and In-135;136, and their P-2n were measured. Weak beta 2n was also detected from Sn-137;138. Our results highlight the effect of the N = 82 and Z = 50 shell closures on beta-delayed neutron emission probability and provide stringent benchmarks for newly developed macroscopic-microscopic and self-consistent global models with the inclusion of a statistical treatment of neutron and. emission. The impact of our measurements on r-process nucleosynthesis was studied in a neutron star merger scenario. Our P-1n and P-2n have a direct impact on the
|
Yokoyama, R. et al, Tain, J. L., Algora, A., Agramunt, J., Domingo-Pardo, C., Morales, A. I., et al. (2023). β-delayed neutron emissions from N > 50 gallium isotopes. Phys. Rev. C, 108(6), 064307–15pp.
Abstract: beta-delayed gamma-neutron spectroscopy has been performed on the decay of A=84 to 87 gallium isotopes at the RI-beam Factory at the RIKEN Nishina Center using a high-efficiency array of 3He neutron counters (BRIKEN). beta-2n-gamma events were measured in the decays of all of the four isotopes for the first time, which is direct evidence for populating the excited states of two-neutron daughter nuclei. Detailed decay schemes with the gamma branching ratios were obtained for these isotopes, and the neutron emission probabilities (P-xn) were updated from the previous study. Hauser-Feshbach statistical model calculations were performed to understand the experimental branching ratios. We found that the P-1n and P-2n values are sensitive to the nuclear level densities of 1n daughter nuclei and showed that the statistical model reproduced the P-2n/P-1n ratio better when experimental levels plus shell-model level densities fit by the Gilbert-Cameron formula were used as the level-density input. We also showed the neutron and gamma branching ratios are sensitive to the ground-state spin of the parent nucleus. Our statistical model analysis suggested J <= 3 for the unknown ground-state spin of the odd-odd nucleus Ga-86, from the I gamma(4(+)-> 2(+))/I-gamma(2(+)-> 0(+)) ratio of Ga-84 and the P-2n/P-1n ratio. These results show the necessity of detailed understanding of the decay scheme, including data from neutron spectroscopy, in addition to gamma measurements of the multineutron emitters.
|
Wu, J. et al, Algora, A., Agramunt, J., Morales, A. I., Orrigo, S. E. A., Tain, J. L., et al. (2022). First observation of isomeric states in 111Zr, 113Nb, and 115Mo. Phys. Rev. C, 106(6), 064328–5pp.
Abstract: Isomeric states in the neutron-rich nuclei 111Zr [T1/2 = 0.10(7) μs], 113Nb [T1/2 = 0.7(4) μs], 115Mo [T1/2 = 46(3) μs] were first identified at the Radioactive Ion Beam Factory (RIBF) of RIKEN by using in-flight fission and fragmentation of a 238U beam at an energy of 345 MeV/u. This is a brief report of the gamma transitions de -exciting from isomeric states and half-lives measurements, which provides the first spectroscopy in the nuclear region of prolate-to-oblate shape-phase transition around mass A approximate to 110.
|
Phong, V. H. et al, Agramunt, J., Algora, A., Domingo-Pardo, C., Morales, A. I., Tain, J. L., et al. (2019). Observation of a μs isomer in In-134(49)85: Proton-neutron coupling “southeast” of Sn-132(50)82. Phys. Rev. C, 100(1), 011302–6pp.
Abstract: We report on the observation of a microsecond isomeric state in the single-proton-hole, three-neutron-particle nucleus In-134. The nuclei of interest were produced by in-flight fission of a U-238 beam at the Radioactive Isotope Beam Factory at RIKEN. The isomer depopulates through a gamma ray of energy 56.7(1) keV and with a half-life of T-1/2 = 3.5(4) μs. Based on the comparison with shell-model calculations, we interpret the isomer as the I-pi = 5(-) member of the pi 0g(9/2)(-1) circle times nu 1f(7/2)(3) multiplet, decaying to the I-pi = 7(-) ground state with a reduced-transition probability of B(E2; 5(-) -> 7(-)) = 0.53(6) W.u. Observation of this isomer, and lack of evidence in the current work for a I-pi = 5(-) isomer decay in In-132, provides a benchmark of the proton-neutron interaction in the region of the nuclear chart “southeast” of Sn-132, where experimental information on excited states is sparse.
|