|   | 
Details
   web
Records
Author ATLAS Collaboration (Aad, G. et al); Amos, K.R.; Aparisi Pozo, J.A.; Bailey, A.J.; Bouchhar, N.; Cabrera Urban, S.; Cantero, J.; Cardillo, F.; Castillo Gimenez, V.; Chitishvili, M.; Costa, M.J.; Didenko, M.; Escobar, C.; Fiorini, L.; Fullana Torregrosa, E.; Fuster, J.; Garcia, C.; Garcia Navarro, J.E.; Gomez Delegido, A.J.; Gonzalez de la Hoz, S.; Gonzalvo Rodriguez, G.R.; Guerrero Rojas, J.G.R.; Lacasta, C.; Marti-Garcia, S.; Martinez Agullo, P.; Miralles Lopez, M.; Mitsou, V.A.; Monsonis Romero, L.; Moreno Llacer, M.; Munoz Perez, D.; Navarro-Gonzalez, J.; Poveda, J.; Prades Ibañez, A.; Rubio Jimenez, A.; Ruiz-Martinez, A.; Sabatini, P.; Salt, J.; Sanchez Sebastian, V.; Sayago Galvan, I.; Senthilkumar, V.; Soldevila, U.; Sanchez, J.; Torro Pastor, E.; Valero, A.; Valiente Moreno, E.; Valls Ferrer, J.A.; Varriale, L.; Villaplana Perez, M.; Vos, M.
Title Search for pair production of squarks or gluinos decaying via sleptons or weak bosons in final states with two same-sign or three leptons with the ATLAS detector Type Journal Article
Year 2024 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.
Volume (up) 02 Issue 2 Pages 107 - 55pp
Keywords Beyond Standard Model; Hadron-Hadron Scattering; Lepton Production; Supersymmetry
Abstract A search for pair production of squarks or gluinos decaying via sleptons or weak bosons is reported. The search targets a final state with exactly two leptons with same-sign electric charge or at least three leptons without any charge requirement. The analysed data set corresponds to an integrated luminosity of 139 fb(-1) of proton-proton collisions collected at a centre-of-mass energy of 13TeV with the ATLAS detector at the LHC. Multiple signal regions are defined, targeting several SUSY simplified models yielding the desired final states. A single control region is used to constrain the normalisation of the WZ + jets background. No significant excess of events over the Standard Model expectation is observed. The results are interpreted in the context of several supersymmetric models featuring R-parity conservation or R-parity violation, yielding exclusion limits surpassing those from previous searches. In models considering gluino (squark) pair production, gluino (squark) masses up to 2.2 (1.7) TeV are excluded at 95% confidence level.
Address [Filmer, E. K.; Jackson, P.; Kong, A. X. Y.; Potti, H.; Ruggeri, T. A.; Ting, E. X. L.; White, M. J.] Univ Adelaide, Dept Phys, Adelaide, SA, Australia
Corporate Author Thesis
Publisher Springer Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1029-8479 ISBN Medium
Area Expedition Conference
Notes WOS:001185394700002 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 6154
Permanent link to this record
 

 
Author Kalliokoski, M.; Mitsou, V.A.; de Montigny, M.; Mukhopadhyay, A.; Ouimet, P.P.A.; Pinfold, J.; Shaa, A.; Staelens, M.
Title Searching for minicharged particles at the energy frontier with the MoEDAL-MAPP experiment at the LHC Type Journal Article
Year 2024 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.
Volume (up) 04 Issue 4 Pages 137 - 22pp
Keywords Dark Matter at Colliders; Models for Dark Matter; New Gauge Interactions; Specific BSM Phenomenology
Abstract The MoEDAL's Apparatus for Penetrating Particles (MAPP) Experiment is designed to expand the search for new physics at the LHC, significantly extending the physics program of the baseline MoEDAL Experiment. The Phase-1 MAPP detector (MAPP-1) is currently undergoing installation at the LHC's UA83 gallery adjacent to the LHCb/MoEDAL region at Interaction Point 8 and will begin data-taking in early 2024. The focus of the MAPP experiment is on the quest for new feebly interacting particles – avatars of new physics with extremely small Standard Model couplings, such as minicharged particles (mCPs). In this study, we present the results of a comprehensive analysis of MAPP-1's sensitivity to mCPs arising in the canonical model involving the kinetic mixing of a massless dark U(1) gauge field with the Standard Model hypercharge gauge field. We focus on several dominant production mechanisms of mCPs at the LHC across the mass-mixing parameter space of interest to MAPP: Drell-Yan pair production, direct decays of heavy quarkonia and light vector mesons, and single Dalitz decays of pseudoscalar mesons. The 95% confidence level background-free sensitivity of MAPP-1 for mCPs produced at the LHC's Run 3 and the HL-LHC through these mechanisms, along with projected constraints on the minicharged strongly interacting dark matter window, are reported. Our results indicate that MAPP-1 exhibits sensitivity to sizable regions of unconstrained parameter space and can probe effective charges as low as 8 x 10 -4 e and 6 x 10 -4 e for Run 3 and the HL-LHC, respectively.
Address [Kalliokoski, Matti] Univ Helsinki, Helsinki Inst Phys, Helsinki 00014, Finland, Email: matti.kalliokoski@helsinki.fi;
Corporate Author Thesis
Publisher Springer Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1029-8479 ISBN Medium
Area Expedition Conference
Notes WOS:001232666600002 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 6148
Permanent link to this record
 

 
Author Escrihuela, F.J.; Flores, L.J.; Miranda, O.G.; Rendon, J.; Sanchez-Velez, R.
Title Examining the sensitivity of FASERν to generalized neutrino interactions Type Journal Article
Year 2024 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.
Volume (up) 04 Issue 4 Pages 102 - 25pp
Keywords Non-Standard Neutrino Properties; Neutrino Interactions; Electroweak Precision Physics
Abstract We investigate the sensitivity of the FASER nu detector, a novel experimental setup at the LHC, to probe and constrain generalized neutrino interactions (GNI). Employing a comprehensive theoretical framework, we model the effects of generalized neutrino interactions on neutrino-nucleon deep inelastic scattering processes within the FASER nu detector. By considering all the neutrino channels produced at the LHC, we perform a statistical analysis to determine the sensitivity of FASER nu to constrain these interactions. Our results demonstrate that FASER nu can place stringent constraints on the GNI effective couplings. Additionally, we study the relation between GNI and a minimal Leptoquark model where the SM is augmented by a singlet Leptoquark with hypercharge 1/3. We have found that the sensitivities for various combinations of the Leptoquark Yukawa couplings are approximately O(1), particularly when considering a Leptoquark mass in the TeV range.
Address [Escrihuela, F. J.] Univ Valencia, CSIC, Inst Fis Corpuscular, AHEP Grp, Parc Cientif Paterna,C Catedrat Jose Beltran 2, E-46980 Paterna, Valencia, Spain, Email: franesfe@alumni.uv.es;
Corporate Author Thesis
Publisher Springer Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1029-8479 ISBN Medium
Area Expedition Conference
Notes WOS:001255987500005 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 6176
Permanent link to this record
 

 
Author Martinez-Mirave, P.; Tamborra, I.; Tortola, M.
Title The Sun and core-collapse supernovae are leading probes of the neutrino lifetime Type Journal Article
Year 2024 Publication Journal of Cosmology and Astroparticle Physics Abbreviated Journal J. Cosmol. Astropart. Phys.
Volume (up) 05 Issue 5 Pages 002 - 39pp
Keywords neutrino properties; solar and atmospheric neutrinos; supernova neutrinos
Abstract The large distances travelled by neutrinos emitted from the Sun and core -collapse supernovae together with the characteristic energy of such neutrinos provide ideal conditions to probe their lifetime, when the decay products evade detection. We investigate the prospects of probing invisible neutrino decay capitalising on the detection of solar and supernova neutrinos as well as the diffuse supernova neutrino background (DSNB) in the next -generation neutrino observatories Hyper-Kamiokande, DUNE, JUNO, DARWIN, and RES-NOVA. We find that future solar neutrino data will be sensitive to values of the lifetime -to -mass ratio tau 1 /m 1 and tau 2 /m 2 of O(10 – 1 -10 – 2 ) s/eV. From a core -collapse supernova explosion at 10 kpc, lifetime -to -mass ratios of the three mass eigenstates of O(10 5 ) s/eV could be tested. After 20 years of data taking, the DSNB would extend the sensitivity reach of tau 1 /m 1 to 10 8 s/eV. These results promise an improvement of about 6-15 orders of magnitude on the values of the decay parameters with respect to existing limits.
Address [Martinez-Mirave, Pablo; Tamborra, Irene] Univ Copenhagen, Niels Bohr Inst, Niels Bohr Int Acad, Blegdamsvej 17, DK-2100 Copenhagen, Denmark, Email: pablo.mirave@nbi.ku.dk;
Corporate Author Thesis
Publisher IOP Publishing Ltd Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1475-7516 ISBN Medium
Area Expedition Conference
Notes WOS:001217801000002 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 6144
Permanent link to this record
 

 
Author Lessa, L.A.; Maluf, R.V.; Silva, J.E.G.; Almeida, C.A.S.
Title Braneworlds in warped Einsteinian cubic gravity Type Journal Article
Year 2024 Publication Journal of Cosmology and Astroparticle Physics Abbreviated Journal J. Cosmol. Astropart. Phys.
Volume (up) 05 Issue 5 Pages 123 - 25pp
Keywords Gauss-Bonnet-Lovelock-Horndeski-Palatini etc gravity theories; gravity; modified gravity
Abstract Einstenian cubic gravity (ECG) is a modified theory of gravity constructed with cubic contractions of the curvature tensor. This theory has the remarkable feature of having the same two propagating degrees of freedom of Einstein gravity (EG), at the perturbative level on maximally symmetric spacetimes. The additional unstable modes steaming from the higher order derivative dynamics are suppressed provided that we consider the ECG as an effective field theory wherein the cubic terms are seen as perturbative corrections of the Einstein -Hilbert term. Extensions of ECG have been proposed in cosmology and compact objects in order to probe if this property holds in more general configurations. In this work, we construct a modified ECG gravity in a five dimensional warped braneworld scenario. By assuming a specific combination of the cubic parameters, we obtained modified gravity equations of motion with terms up to second -order. For a thin 3-brane, the cubic -gravity corrections yield an effective positive bulk cosmological constant. Thus, in order to keep the 5D bulk warped compact, an upper bound of the cubic parameter with respect to the bulk curvature was imposed. For a thick brane, the cubic -gravity terms modify the scalar field potential and its corresponding vacuum. Nonetheless, the domain -wall structure with a localized source is preserved. At the perturbative level, the Kaluza-Klein (KK) tensor gravitational modes are stable and possess a localized massless mode provided the cubic corrections are small compared to the EG braneworld.
Address [Lessa, L. A.; Maluf, R. V.; Silva, J. E. G.; Almeida, C. A. S.] Univ Fed Ceara UFC, Dept Fis, Campus Pici, BR-60455760 Fortaleza, CE, Brazil, Email: leandrolessa@fisica.ufc.br;
Corporate Author Thesis
Publisher IOP Publishing Ltd Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1475-7516 ISBN Medium
Area Expedition Conference
Notes WOS:001240966600001 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 6164
Permanent link to this record
 

 
Author Fernandez Navarro, M.; King, S.F.; Vicente, A.
Title Tri-unification: a separate SU(5) for each fermion family Type Journal Article
Year 2024 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.
Volume (up) 05 Issue 5 Pages 130 - 32pp
Keywords Grand Unification; Theories of Flavour
Abstract In this paper we discuss SU(5)3 with cyclic symmetry as a possible grand unified theory (GUT). The basic idea of such a tri-unification is that there is a separate SU(5) for each fermion family, with the light Higgs doublet(s) arising from the third family SU(5), providing a basis for charged fermion mass hierarchies. SU(5)3 tri-unification reconciles the idea of gauge non-universality with the idea of gauge coupling unification, opening the possibility to build consistent non-universal descriptions of Nature that are valid all the way up to the scale of grand unification. As a concrete example, we propose a grand unified embedding of the tri-hypercharge model \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\text{U}}{\left(1\right)}_{Y}<^>{3}$$\end{document} based on an SU(5)3 framework with cyclic symmetry. We discuss a minimal tri-hypercharge example which can account for all the quark and lepton (including neutrino) masses and mixing parameters. We show that it is possible to unify the many gauge couplings into a single gauge coupling associated with the cyclic SU(5)3 gauge group, by assuming minimal multiplet splitting, together with a set of relatively light colour octet scalars. We also study proton decay in this example, and present the predictions for the proton lifetime in the dominant e+pi 0 channel.
Address [Navarro, Mario Fernandez; King, Stephen F.] Univ Southampton, Sch Phys & Astron, Southampton SO17 1BJ, England, Email: Mario.FernandezNavarro@glasgow.ac.uk;
Corporate Author Thesis
Publisher Springer Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1029-8479 ISBN Medium
Area Expedition Conference
Notes WOS:001256025400004 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 6171
Permanent link to this record
 

 
Author Chu, X.Y.; Garani, R.; Garcia-Cely, C.; Hambye, T.
Title Dark matter bound-state formation in the Sun Type Journal Article
Year 2024 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.
Volume (up) 05 Issue 5 Pages 045 - 32pp
Keywords Models for Dark Matter; Specific BSM Phenomenology; Neutrino Interactions; Early Universe Particle Physics
Abstract The Sun may capture asymmetric dark matter (DM), which can subsequently form bound-states through the radiative emission of a sub-GeV scalar. This process enables generation of scalars without requiring DM annihilation. In addition to DM capture on nucleons, the DM-scalar coupling responsible for bound-state formation also induces capture from self-scatterings of ambient DM particles with DM particles already captured, as well as with DM bound-states formed in-situ within the Sun. This scenario is studied in detail by solving Boltzmann equations numerically and analytically. In particular, we take into consideration that the DM self-capture rates require a treatment beyond the conventional Born approximation. We show that, thanks to DM scatterings on bound-states, the number of DM particles captured increases exponentially, leading to enhanced emission of relativistic scalars through bound-state formation, whose final decay products could be observable. We explore phenomenological signatures with the example that the scalar mediator decays to neutrinos. We find that the neutrino flux emitted can be comparable to atmospheric neutrino fluxes within the range of energies below one hundred MeV. Future facilities like Hyper-K, and direct DM detection experiments can further test such scenario.
Address [Chu, Xiaoyong] Austrian Acad Sci, Inst High Energy Phys, Nikolsdorfer Gasse 18, A-1050 Vienna, Austria, Email: xiaoyong.chu@oeaw.ac.at;
Corporate Author Thesis
Publisher Springer Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1029-8479 ISBN Medium
Area Expedition Conference
Notes WOS:001255993100008 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 6172
Permanent link to this record
 

 
Author Giarnetti, A.; Herrero-Garcia, J.; Marciano, S.; Meloni, D.; Vatsyayan, D.
Title Neutrino masses from new Weinberg-like operators: phenomenology of TeV scalar multiplets Type Journal Article
Year 2024 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.
Volume (up) 05 Issue 5 Pages 055 - 37pp
Keywords Baryon/Lepton Number Violation; Multi-Higgs Models
Abstract The unique dimension-5 effective operator, LLHH, known as the Weinberg operator, generates tiny Majorana masses for neutrinos after electroweak spontaneous symmetry breaking. If there are new scalar multiplets that take vacuum expectation values (VEVs), they should not be far from the electroweak scale. Consequently, they may generate new dimension-5 Weinberg-like operators which in turn also contribute to Majorana neutrino masses. In this study, we consider scenarios with one or two new scalars up to quintuplet SU(2) representations. We analyse the scalar potentials, studying whether the new VEVs can be induced and therefore are naturally suppressed, as well as the potential existence of pseudo-Nambu-Goldstone bosons. Additionally, we also obtain general limits on the new scalar multiplets from direct searches at colliders, loop corrections to electroweak precision tests and the W-boson mass.
Address [Giarnetti, Alessio; Marciano, Simone; Meloni, Davide] Univ Roma Tre, Dipartimento Matemat & Fis, Via Vasca Navale 84, I-00146 Rome, Italy, Email: alessio.giarnetti@uniroma3.it;
Corporate Author Thesis
Publisher Springer Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1029-8479 ISBN Medium
Area Expedition Conference
Notes WOS:001255993100006 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 6173
Permanent link to this record
 

 
Author Forconi, M.; Giare, W.; Mena, O.; Ruchika; Di Valentino, E.; Melchiorri, A.; Nunes, R.C.
Title A double take on early and interacting dark energy from JWST Type Journal Article
Year 2024 Publication Journal of Cosmology and Astroparticle Physics Abbreviated Journal J. Cosmol. Astropart. Phys.
Volume (up) 05 Issue 5 Pages 097 - 37pp
Keywords high redshift galaxies; dark energy theory; physics of the early universe
Abstract The very first light captured by the James Webb Space Telescope (JWST) revealed a population of galaxies at very high redshifts more massive than expected in the canonical Lambda CDM model of structure formation. Barring, among others, a systematic origin of the issue, in this paper, we test alternative cosmological perturbation histories. We argue that models with a larger matter component ohm m and/or a larger scalar spectral index n s can substantially improve the fit to JWST measurements. In this regard, phenomenological extensions related to the dark energy sector of the theory are appealing alternatives, with Early Dark Energy emerging as an excellent candidate to explain (at least in part) the unexpected JWST preference for larger stellar mass densities. Conversely, Interacting Dark Energy models, despite producing higher values of matter clustering parameters such as sigma 8 , are generally disfavored by JWST measurements. This is due to the energy -momentum flow from the dark matter to the dark energy sector, implying a smaller matter energy density. Upcoming observations may either strengthen the evidence or falsify some of these appealing phenomenological alternatives to the simplest Lambda CDM picture.
Address [Forconi, Matteo; Melchiorri, Alessandro] Univ Roma La Sapienza, Phys Dept, Ple Aldo Moro 2, I-00185 Rome, Italy, Email: matteo.forconi@roma1.infn.it;
Corporate Author Thesis
Publisher IOP Publishing Ltd Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1475-7516 ISBN Medium
Area Expedition Conference
Notes WOS:001259284100005 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 6179
Permanent link to this record
 

 
Author Das, B. et al; Algora, A.
Title Broken seniority symmetry in the semimagic proton mid-shell nucleus 95Rh Type Journal Article
Year 2024 Publication Physical Review Research Abbreviated Journal Phys. Rev. Res.
Volume (up) 6 Issue 2 Pages L022038 - 7pp
Keywords
Abstract Lifetime measurements of low-lying excited states in the semimagic ( N = 50) nucleus 95 Rh have been performed by means of the fast -timing technique. The experiment was carried out using gamma -ray detector arrays consisting of LaBr 3 (Ce) scintillators and germanium detectors integrated into the DESPEC experimental setup commissioned for the Facility for Antiproton and Ion Research ( FAIR ) Phase -0, Darmstadt, Germany. The excited states in 95 Rh were populated primarily via the /3 decays of 95 Pd nuclei, produced in the projectile fragmentation of a 850 MeV / nucleon 124 Xe beam impinging on a 4 g / cm 2 9 Be target. The deduced electromagnetic E2 transition strengths for the gamma -ray cascade within the multiplet structure depopulating from the isomeric I pi = 21 / 2 + state are found to exhibit strong deviations from predictions of standard shell model calculations which feature approximately conserved seniority symmetry. In particular, the observation of a strongly suppressed E2 strength for the 13 / 2 + -> 9 / 2 + ground state transition cannot be explained by calculations employing standard interactions. This remarkable result may require revision of the nucleon-nucleon interactions employed in state-of-the-art theoretical model calculations, and might also point to the need for including three-body forces in the Hamiltonian.
Address [Das, B.; Cederwall, B.; Qi, C.; Aktas, O.; Liotta, R.; Vasiljevic, J.] KTH Royal Inst Technol, S-10691 Stockholm, Sweden, Email: b.das@gsi.de;
Corporate Author Thesis
Publisher Amer Physical Soc Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes WOS:001240855200002 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 6147
Permanent link to this record