|   | 
Details
   web
Records
Author Anderson, P.R.; Balbinot, R.; Fabbri, A.; Parentani, R.
Title Gray-body factor and infrared divergences in 1D BEC acoustic black holes Type Journal Article
Year 2014 Publication Physical Review D Abbreviated Journal Phys. Rev. D
Volume (down) 90 Issue 10 Pages 104044 - 6pp
Keywords
Abstract It is shown that the gray-body factor for a one-dimensional elongated Bose-Einstein condensate (BEC) acoustic black hole with one horizon does not vanish in the low-frequency (omega -> 0) limit. This implies that the analog Hawking radiation is dominated by the emission of an infinite number (1/omega) of soft phonons in contrast with the case of a Schwarzschild black hole where the gray-body factor vanishes as omega -> 0 and the spectrum is not dominated by low-energy particles. The infrared behaviors of certain correlation functions are also discussed.
Address [Anderson, Paul R.] Wake Forest Univ, Dept Phys, Winston Salem, NC 27109 USA, Email: anderson@wfu.edu;
Corporate Author Thesis
Publisher Amer Physical Soc Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1550-7998 ISBN Medium
Area Expedition Conference
Notes WOS:000348186700004 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 2079
Permanent link to this record
 

 
Author Anderson, P.R.; Balbinot, R.; Fabbri, A.; Parentani, R.
Title Hawking radiation correlations in Bose-Einstein condensates using quantum field theory in curved space Type Journal Article
Year 2013 Publication Physical Review D Abbreviated Journal Phys. Rev. D
Volume (down) 87 Issue 12 Pages 124018 - 18pp
Keywords
Abstract The density-density correlation function is computed for the Bogoliubov pseudoparticles created in a Bose-Einstein condensate undergoing a black hole flow. On the basis of the gravitational analogy, the method used relies only on quantum field theory in curved spacetime techniques. A comparison with the results obtained by ab initio full condensed matter calculations is given, confirming the validity of the approximation used, provided the profile of the flow varies smoothly on scales compared to the condensate healing length.
Address [Anderson, Paul R.] Wake Forest Univ, Dept Phys, Winston Salem, NC 27109 USA, Email: anderson@wfu.edu;
Corporate Author Thesis
Publisher Amer Physical Soc Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1550-7998 ISBN Medium
Area Expedition Conference
Notes WOS:000320609200009 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 1488
Permanent link to this record
 

 
Author Coutant, A.; Fabbri, A.; Parentani, R.; Balbinot, R.; Anderson, P.R.
Title Hawking radiation of massive modes and undulations Type Journal Article
Year 2012 Publication Physical Review D Abbreviated Journal Phys. Rev. D
Volume (down) 86 Issue 6 Pages 064022 - 17pp
Keywords
Abstract We compute the analogue Hawking radiation for modes which possess a small wave vector perpendicular to the horizon. For low frequencies, the resulting mass term induces a total reflection. This reflection is accompanied by an extra mode mixing which occurs in the supersonic region, and which cancels out the infrared divergence of the near horizon spectrum. As a result, the amplitude of the undulation (0-frequency wave with macroscopic amplitude) emitted in white hole flows now saturates at the linear level, unlike what is found in the massless case. In addition, we point out that the mass introduces a new type of undulation which is produced in black hole flows, and which is well described in the hydrodynamical regime.
Address [Coutant, Antonin; Parentani, Renaud] Univ Paris 11, Phys Theor Lab, CNRS, UMR 8627, F-91405 Orsay, France, Email: antonin.coutant@th.u-psud.fr;
Corporate Author Thesis
Publisher Amer Physical Soc Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1550-7998 ISBN Medium
Area Expedition Conference
Notes WOS:000308642300005 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 1174
Permanent link to this record
 

 
Author Mayoral, C.; Recati, A.; Fabbri, A.; Parentani, R.; Balbinot, R.; Carusotto, I.
Title Acoustic white holes in flowing atomic Bose-Einstein condensates Type Journal Article
Year 2011 Publication New Journal of Physics Abbreviated Journal New J. Phys.
Volume (down) 13 Issue Pages 025007 - 29pp
Keywords
Abstract We study acoustic white holes in a steadily flowing atomic Bose-Einstein condensate. A white hole configuration is obtained when the flow velocity goes from a super-sonic value in the upstream region to a sub-sonic one in the downstream region. The scattering of phonon wavepackets on a white hole horizon is numerically studied in terms of the Gross-Pitaevskii equation of mean-field theory: dynamical stability of the acoustic white hole is found, as well as a signature of a nonlinear back-action of the incident phonon wavepacket onto the horizon. The correlation pattern of density fluctuations is numerically studied by means of the truncated-Wigner method, which includes quantum fluctuations. Signatures of the white hole radiation of correlated phonon pairs by the horizon are characterized; analogies and differences with Hawking radiation from acoustic black holes are discussed. In particular, a short wavelength feature is identified in the density correlation function, whose amplitude steadily grows in time since the formation of the horizon. The numerical observations are quantitatively interpreted by means of an analytical Bogoliubov theory of quantum fluctuations for a white hole configuration within the step-like horizon approximation.
Address [Recati, Alessio; Carusotto, Iacopo] Univ Trent, INO CNR BEC Ctr, I-38123 Povo, Italy, Email: carusott@science.unitn.it
Corporate Author Thesis
Publisher Iop Publishing Ltd Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1367-2630 ISBN Medium
Area Expedition Conference
Notes ISI:000287855400003 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 556
Permanent link to this record