|   | 
Details
   web
Records
Author Ferreiro, A.; Navarro-Salas, J.
Title Running couplings from adiabatic regularization Type Journal Article
Year 2019 Publication Physics Letters B Abbreviated Journal Phys. Lett. B
Volume (down) 792 Issue Pages 81-85
Keywords Adiabatic renormalization; Running couplings; Semiclassical Maxwell-Einstein equations
Abstract We extend the adiabatic regularization method by introducing an arbitrary mass scale μin the construction of the subtraction terms. This allows us to obtain, in a very robust way, the running of the coupling constants by demanding mu-invariance of the effective semiclassical (Maxwell-Einstein) equations. In particular, we get the running of the electric charge of perturbative quantum electrodynamics. Furthermore, the method brings about a renormalization of the cosmological constant and the Newtonian gravitational constant. The running obtained for these dimensionful coupling constants has new relevant (non-logarithmic) contributions, not predicted by dimensional regularization.
Address [Ferreiro, Antonio; Navarro-Salas, Jose] Univ Valencia, Fac Fis, Ctr Mixto, Dept Fis Teor,CSIC, E-46100 Valencia, Spain, Email: antonio.ferreiro@ific.uv.es;
Corporate Author Thesis
Publisher Elsevier Science Bv Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0370-2693 ISBN Medium
Area Expedition Conference
Notes WOS:000466802100015 Approved no
Is ISI yes International Collaboration no
Call Number IFIC @ pastor @ Serial 3997
Permanent link to this record
 

 
Author del Rio, A.; Sanchis-Gual, N.; Mewes, V.; Agullo, I.; Font, J.A.; Navarro-Salas, J.
Title Spontaneous Creation of Circularly Polarized Photons in Chiral Astrophysical Systems Type Journal Article
Year 2020 Publication Physical Review Letters Abbreviated Journal Phys. Rev. Lett.
Volume (down) 124 Issue 21 Pages 211301 - 6pp
Keywords
Abstract This work establishes a relation between chiral anomalies in curved spacetimes and the radiative content of the gravitational field. In particular, we show that a flux of circularly polarized gravitational waves triggers the spontaneous creation of photons with net circular polarization from the quantum vacuum. Using waveform catalogs, we identify precessing binary black holes as astrophysical configurations that emit such gravitational radiation and then solve the fully nonlinear Einstein's equations with numerical relativity to evaluate the net effect. The quantum amplitude for a merger is comparable to the Hawking emission rate of the final black hole and small to be directly observed. However, the implications for the inspiral of binary neutron stars could be more prominent, as argued on symmetry grounds.
Address [del Rio, Adrian; Sanchis-Gual, Nicolas] Univ Lisbon, Inst Super Tecn, Ctr Astrofis & Gravitacao CENTRA, Ave Rovisco Pais 1, P-1049001 Lisbon, Portugal
Corporate Author Thesis
Publisher Amer Physical Soc Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0031-9007 ISBN Medium
Area Expedition Conference
Notes WOS:000535679100012 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 4407
Permanent link to this record
 

 
Author Agullo, I.; del Rio, A.; Navarro-Salas, J.
Title Electromagnetic Duality Anomaly in Curved Spacetimes Type Journal Article
Year 2017 Publication Physical Review Letters Abbreviated Journal Phys. Rev. Lett.
Volume (down) 118 Issue 11 Pages 111301 - 5pp
Keywords
Abstract The source-free Maxwell action is invariant under electric-magnetic duality rotations in arbitrary spacetimes. This leads to a conserved classical Noether charge. We show that this conservation law is broken at the quantum level in the presence of a background classical gravitational field with a nontrivial Chern-Pontryagin invariant, in parallel with the chiral anomaly for massless Dirac fermions. Among the physical consequences, the net polarization of the quantum electromagnetic field is not conserved.
Address [Agullo, Ivan; del Rio, Adrian] Louisiana State Univ, Dept Phys & Astron, Baton Rouge, LA 70803 USA, Email: agullo@lsu.edu;
Corporate Author Thesis
Publisher Amer Physical Soc Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0031-9007 ISBN Medium
Area Expedition Conference
Notes WOS:000396267100003 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 2964
Permanent link to this record
 

 
Author Marañon-Gonzalez, F.J.; Navarro-Salas, J.
Title Adiabatic regularization for spin-1 fields Type Journal Article
Year 2023 Publication Physical Review D Abbreviated Journal Phys. Rev. D
Volume (down) 108 Issue 12 Pages 125001 - 11pp
Keywords
Abstract We analyze the adiabatic regularization scheme to renormalize Proca fields in a four-dimensional Friedmann-Lemaitre-Robertson-Walker spacetime. The adiabatic method is well established for scalar and spin-1/2 fields, but is not yet fully understood for spin-1 fields. We give the details of the construction and show that, in the massless limit, the renormalized stress-energy tensor of the Proca field is closely related to that of a minimally coupled scalar field. Our result is in full agreement with other approaches, based on the effective action, which also show a discontinuity in the massless limit. The scalar field can be naturally regarded as a Stueckelberg-type field. We also test the consistency of our results in de Sitter space.
Address [Maranon-Gonzalez, F. Javier; Navarro-Salas, Jose] Univ Valencia, Dept Fis Teor, CSIC, Burjassot 46100, Valencia, Spain, Email: jnavarro@ific.uv.es
Corporate Author Thesis
Publisher Amer Physical Soc Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2470-0010 ISBN Medium
Area Expedition Conference
Notes WOS:001121689900014 Approved no
Is ISI yes International Collaboration no
Call Number IFIC @ pastor @ Serial 5871
Permanent link to this record
 

 
Author Beltran-Palau, P.; del Rio, A.; Navarro-Salas, J.
Title Quantum corrections to the Schwarzschild metric from vacuum polarization Type Journal Article
Year 2023 Publication Physical Review D Abbreviated Journal Phys. Rev. D
Volume (down) 107 Issue 8 Pages 085023 - 15pp
Keywords
Abstract We explore static and spherically symmetric solutions of the 4-dimensional semiclassical Einstein's equations using the quantum vacuum polarization of a conformal field as a source. These solutions may be of interest for the study of exotic compact objects (ECOs). The full backreaction problem is addressed by solving the semiclassical Tolman-Oppenheimer-Volkoff (TOV) equations making use of effective equations of state inspired by the trace anomaly and an extra simplifying and reasonable assumption. We combine analytical and numerical techniques to solve the resulting differential equations, both perturbatively and nonperturbatively in h. In all cases the solution is similar to the Schwarzschild metric up p ffiffito the vicinity of the classical horizon r = 2M. However, at r = 2M + epsilon, with epsilon similar to O(root h), we find a coordinate singularity. In the case of matching with a static star, this leads to an upper bound in the compactness, and sets a constraint on the family of stable ECOs. We also study the corrections that the quantum-vacuum polarization induces on the propagation of waves, and discuss the implications. For the pure vacuum case, we can further extend the solution by using appropriate coordinates until we reach another singular point, where this time a null curvature singularity arises and prevents extending beyond. This picture qualitatively agrees with the results obtained in the effective two-dimensional approach, and reinforces the latter as a reasonable method.
Address [Beltran-Palau, Pau; Navarro-Salas, Jose] Univ Valencia, Dept Fis Teor, Burjassot 46100, Valencia, Spain, Email: pau.beltran@uv.es;
Corporate Author Thesis
Publisher Amer Physical Soc Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2470-0010 ISBN Medium
Area Expedition Conference
Notes WOS:000988649200017 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 5543
Permanent link to this record
 

 
Author Nadal-Gisbert, S.; Navarro-Salas, J.; Pla, S.
Title Low-energy states and CPT invariance at the big bang Type Journal Article
Year 2023 Publication Physical Review D Abbreviated Journal Phys. Rev. D
Volume (down) 107 Issue 8 Pages 085018 - 16pp
Keywords
Abstract In this paper, we analyze the quantum vacuum in a radiation-dominated and CPT -invariant universe by further imposing the quantum states to be ultraviolet regular i.e., satisfying the Hadamard/adiabatic condition. For scalar fields, this is enforced by constructing the vacuum via the states of low-energy proposal. For spin -12 fields, we extend this proposal for a FLRW spacetime and apply it for the radiation-dominated and CPT -invariant universe. We focus on minimizing the smeared energy density around the big bang and give strong evidence that the resulting states satisfy the Hadamard/adiabatic condition. These states are then self -consistent candidates as effective big bang quantum vacuum from the field theory perspective.
Address [Nadal-Gisbert, Sergi; Navarro-Salas, Jose] Univ Valencia, Ctr Mixto Univ Valencia, CSIC Fac Fis, Dept Fis Teor, Valencia 46100, Spain, Email: sergi.nadal@uv.es;
Corporate Author Thesis
Publisher Amer Physical Soc Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2470-0010 ISBN Medium
Area Expedition Conference
Notes WOS:000981997800003 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 5585
Permanent link to this record
 

 
Author Agullo, I.; Navarro-Salas, J.; Olmo, G.J.; Parker, L.
Title Hawking Radiation by Kerr Black Holes and Conformal Symmetry Type Journal Article
Year 2010 Publication Physical Review Letters Abbreviated Journal Phys. Rev. Lett.
Volume (down) 105 Issue 21 Pages 211305 - 4pp
Keywords
Abstract The exponential blueshift associated with the event horizon of a black hole makes conformal symmetry play a fundamental role in accounting for its thermal properties. Using a derivation based on two-point functions, we show that the full spectrum of thermal radiation of scalar particles by Kerr black holes can be explicitly derived on the basis of a conformal symmetry arising in the wave equation near the horizon. The simplicity of our approach emphasizes the depth of the connection between conformal symmetry and black hole radiance.
Address [Agullo, Ivan; Parker, Leonard] Univ Wisconsin, Dept Phys, Milwaukee, WI 53201 USA
Corporate Author Thesis
Publisher Amer Physical Soc Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0031-9007 ISBN Medium
Area Expedition Conference
Notes ISI:000284407400004 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ elepoucu @ Serial 322
Permanent link to this record
 

 
Author Ferreiro, A.; Nadal-Gisbert, S.; Navarro-Salas, J.
Title Renormalization, running couplings, and decoupling for the Yukawa model in a curved spacetime Type Journal Article
Year 2021 Publication Physical Review D Abbreviated Journal Phys. Rev. D
Volume (down) 104 Issue 2 Pages 025003 - 8pp
Keywords
Abstract The decoupling of heavy fields as required by the Appelquist-Carazzone theorem plays a fundamental role in the construction of any effective field theory. However, it is not a trivial task to implement a renormalization prescription that produces the expected decoupling of massive fields, and it is even more difficult in curved spacetime. Focused on this idea, we consider the renormalization of the one-loop effective action for the Yukawa interaction with a background scalar field in curved space. We compute the beta functions within a generalized DeWitt-Schwinger subtraction procedure and discuss the decoupling in the running of the coupling constants. For the case of a quantized scalar field, all the beta function exhibit decoupling, including also the gravitational ones. For a quantized Dirac field, decoupling appears almost for all the beta functions. We obtain the anomalous result that the mass of the background scalar field does not decouple.
Address [Ferreiro, Antonio; Nadal-Gisbert, Sergi; Navarro-Salas, Jose] Univ Valencia, Fac Fis, Dept Fis Teor, Valencia 46100, Spain, Email: antonio.ferreiro@ific.uv.es;
Corporate Author Thesis
Publisher Amer Physical Soc Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2470-0010 ISBN Medium
Area Expedition Conference
Notes WOS:000669563900006 Approved no
Is ISI yes International Collaboration no
Call Number IFIC @ pastor @ Serial 4896
Permanent link to this record
 

 
Author Navarro-Salas, J.; Pla, S.
Title (F, G)-summed form of the QED effective action Type Journal Article
Year 2021 Publication Physical Review D Abbreviated Journal Phys. Rev. D
Volume (down) 103 Issue 8 Pages L081702 - 7pp
Keywords
Abstract We conjecture that the proper-time series expansion of the one-loop effective Lagrangian of quantum electrodynamics can be summed in all terms containing the field-strength invariants F = 1/4F F-mu nu(mu nu) (x), G = 1/4 (F) over tilde F-mu nu(mu nu) (x), including those also possessing derivatives of the electromagnetic field strength. This partial resummation is exactly encapsulated in a factor with the same form as the Heisenberg-Euler Lagrangian density, except that now the electric and magnetic fields can depend arbitrarily on spacetime coordinates. We provide strong evidence for this conjecture, which is proved to sixth order in the proper time. Furthermore, and as a byproduct, we generate some solvable electromagnetic backgrounds. We also discuss the implications for a generalization of the Schwinger formula for pair production induced by nonconstant electric fields. Finally, we briefly outline the extension of these results in the presence of gravity.
Address [Navarro-Salas, Jose; Pla, Silvia] Univ Valencia, Dept Fis Teor, Valencia 46100, Spain, Email: jnavarro@ific.uv.es;
Corporate Author Thesis
Publisher Amer Physical Soc Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2470-0010 ISBN Medium
Area Expedition Conference
Notes WOS:000649081100005 Approved no
Is ISI yes International Collaboration no
Call Number IFIC @ pastor @ Serial 4834
Permanent link to this record
 

 
Author Pla, S.; Newsome, I.M.; Link, R.S.; Anderson, P.R.; Navarro-Salas, J.
Title Pair production due to an electric field in 1+1 dimensions and the validity of the semiclassical approximation Type Journal Article
Year 2021 Publication Physical Review D Abbreviated Journal Phys. Rev. D
Volume (down) 103 Issue 10 Pages 105003 - 23pp
Keywords
Abstract Solutions to the backreaction equation in 1 + 1-dimensional semiclassical electrodynamics are obtained and analyzed when considering a time-varying homogeneous electric field initially generated by a classical electric current, coupled to either a quantized scalar field or a quantized spin-1/2 field. Particle production by way of the Schwinger effect leads to backreaction effects that modulate the electric field strength. Details of the particle production process are investigated along with the transfer of energy between the electric field and the particles. The validity of the semiclassical approximation is also investigated using a criterion previously implemented for chaotic inflation and, in an earlier form, semiclassical gravity. The criterion states that the semiclassical approximation will break down if any linearized gauge-invariant quantity constructed from solutions to the linear response equation, with finite nonsingular data, grows rapidly for some period of time. Approximations to homogeneous solutions of the linear response equation are computed and it is found that the criterion is violated when the maximum value, E-max, obtained by the electric field is of the order of the critical scale for the Schwinger effect, E-max similar to E-crit m(2)/q, where m is the mass of the quantized field and q is its electric charge. For these approximate solutions the criterion appears to be satisfied in the extreme limits qE(max)/m(2) << 1 and qE(max)/m(2) >> 1.
Address [Pla, Silvia; Navarro-Salas, Jose] Univ Valencia, Ctr Mixto Univ Valencia, Fac Fis, CSIC,Dept Fis Teor, E-46100 Valencia, Spain, Email: silvia.pla@uv.es;
Corporate Author Thesis
Publisher Amer Physical Soc Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2470-0010 ISBN Medium
Area Expedition Conference
Notes WOS:000655874700008 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 4844
Permanent link to this record