|   | 
Details
   web
Records
Author Garcia, A.R.; Martinez, T.; Cano-Ott, D.; Castilla, J.; Guerrero, C.; Marin, J.; Martinez, G.; Mendoza, E.; Ovejero, M.C.; Reillo, E.M.; Santos, C.; Tera, F.J.; Villamarin, D.; Nolte, R.; Agramunt, J.; Algora, A.; Tain, J.L.; Banerjee, K.; Bhattacharya, C.; Pentilla, H.; Rinta-Antila, S.; Gorelov, D.
Title MONSTER: a time of flight spectrometer for beta-delayed neutron emission measurements Type Journal Article
Year 2012 Publication Journal of Instrumentation Abbreviated Journal J. Instrum.
Volume (up) 7 Issue Pages C05012 - 12pp
Keywords Scintillators, scintillation and light emission processes (solid, gas and liquid scintillators); Instrumentation and methods for time-of-flight (TOF) spectroscopy; Neutron detectors (cold, thermal, fast neutrons)
Abstract The knowledge of the beta-decay properties of nuclei contributes decisively to our understanding of nuclear phenomena: the beta-delayed neutron emission of neutron rich nuclei plays an important role in the nucleosynthesis r-process and constitutes a probe for nuclear structure of very neutron rich nuclei providing information about the high energy part of the full beta strength (S-beta) function. In addition, beta-delayed neutrons are essential for the control and safety of nuclear reactors. In order to determine the neutron energy spectra and emission probabilities from neutron precursors a MOdular Neutron time-of-flight SpectromeTER (MONSTER) has been proposed for the DESPEC experiment at the future FAIR facility. The design of MONSTER and status of its construction are reported in this work.
Address [Garcia, A. R.; Martinez, T.; Cano-Ott, D.; Castilla, J.; Guerrero, C.; Marin, J.; Martinez, G.; Mendoza, E.; Ovejero, M. C.; Reillo, E. M.; Santos, C.; Tera, F. J.; Villamarin, D.] Ctr Invest Energet MedioAmbientales & Tecnol CIEM, E-28040 Madrid, Spain, Email: trino.martinez@ciemat.es
Corporate Author Thesis
Publisher Iop Publishing Ltd Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1748-0221 ISBN Medium
Area Expedition Conference
Notes WOS:000305419700013 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 1084
Permanent link to this record
 

 
Author Jordan, D.; Tain, J.L.; Algora, A.; Agramunt, J.; Domingo-Pardo, C.; Gomez-Hornillos, M.B.; Caballero-Folch, R.; Cortes, G.; Cano-Ott, D.; Mendoza, E.; Bandac, I.; Bettini, A.; Fraile, L.M.; Domingo, C.
Title Measurement of the neutron background at the Canfranc Underground Laboratory LSC Type Journal Article
Year 2013 Publication Astroparticle Physics Abbreviated Journal Astropart Phys.
Volume (up) 42 Issue Pages 1-6
Keywords Neutron background; Underground physics; He-3 proportional counters
Abstract The energy distribution of the neutron background was measured for the first time at Hall A of the Canfranc Underground Laboratory. For this purpose we used a novel approach based on the combination of the information obtained with six large high-pressure He-3 proportional counters embedded in individual polyethylene blocks of different size. In this way not only the integral value but also the flux distribution as a function of neutron energy was determined in the range from 1 eV to 10 MeV. This information is of importance because different underground experiments show different neutron background energy dependence. The high sensitivity of the setup allowed to measure a neutron flux level which is about four orders of magnitude smaller that the neutron background at sea level. The integral value obtained is Phi(Hall A) = (3.44 +/- 0.35) x 10(-6) cm(-2) s(-1).
Address [Jordan, D.; Tain, J. L.; Algora, A.; Agramunt, J.; Domingo-Pardo, C.] Univ Valencia, CSIC, Inst Fis Corpuscular, Valencia, Spain, Email: jordan@ific.uv.es
Corporate Author Thesis
Publisher Elsevier Science Bv Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0927-6505 ISBN Medium
Area Expedition Conference
Notes WOS:000315371900001 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 1351
Permanent link to this record
 

 
Author Hornillos, M.B.G.; Gorlychev, V.; Caballero, R.; Cortes, G.; Poch, A.; Pretel, C.; Calvino, F.; Tain, J.L.; Algora, A.; Agramunt, J.; Cano-Ott, D.; Martinez, T.; Mendoza, E.; Rissanen, J.; Aysto, J.; Jokinen, A.; Eronen, T.; Moore, I.; Penttila, H.
Title Monte Carlo Simulations for the Study of a Moderated Neutron Detector Type Journal Article
Year 2011 Publication Journal of the Korean Physical Society Abbreviated Journal J. Korean Phys. Soc.
Volume (up) 59 Issue 2 Pages 1573-1576
Keywords Monte Carlo simulations; GEANT4; MCNPX; Beta delayed neutron emission; Neutron detector
Abstract This work presents the Monte Carlo simulations performed with the MCNPX and GEANT4 codes for the design of a BEta deLayEd Neutron detector, BELEN-20. This detector will be used for the study of beta delayed neutron emission and consists of a block of polyethylene with dimensions 90 x 90 x 80 cm(3) and 20 cylindrical (3)He gas counters. The results of these simulations have been validated experimentally with a (252)Cf source in the laboratory at UPC, Barcelona. Also the first experiment with this detector has been carried out in November 2009 in JYFL, Finland. In this experiment the neutron emission probability after beta decay of the fission products (88)Br, (94,95)Rb, and (138)I has been measured; this data is still under analysis. Simulations with MCNPX and GEANT4 have been performed in order to obtain the efficiency of the BELEN-20 detector for each of the above nuclei using the neutron energy distribution corresponding to each nucleus.
Address [Hornillos, MBG; Gorlychev, V; Caballero, R; Cortes, G; Poch, A; Pretel, C; Calvino, F] Univ Politecn Cataluna, Seccio Engn Nucl, E-08028 Barcelona, Spain, Email: belen.gomez@upc.edu
Corporate Author Thesis
Publisher Korean Physical Soc Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0374-4884 ISBN Medium
Area Expedition Conference
Notes WOS:000294080700028 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ elepoucu @ Serial 733
Permanent link to this record
 

 
Author n_TOF Collaboration (Mendoza, E. et al); Giubrone, G.; Tain, J.L.
Title Improved Neutron Capture Cross Section Measurements with the n_TOF Total Absorption Calorimeter Type Journal Article
Year 2011 Publication Journal of the Korean Physical Society Abbreviated Journal J. Korean Phys. Soc.
Volume (up) 59 Issue 2 Pages 1813-1816
Keywords ND2010; Nuclear data; n_TOF; Background; Monte Carlo; Neutron; Time of flight; Cross section; Calorimeter; Shielding; Simulation; Total absorption; Gamma ray; Neutron capture
Abstract The n_TOF collaboration operates a Total Absorption Calorimeter (TAC) [1] for measuring neutron capture cross-sections of low-mass and/or radioactive samples. The results obtained with the TAC have led to a substantial improvement of the capture cross sections of (237)Np and (240)Pu [2]. The experience acquired during the first measurements has allowed us to optimize the performance of the TAC and to improve the capture signal to background ratio, thus opening the way to more complex and demanding measurements on rare radioactive materials. The new design has been reached by a series of detailed Monte Carlo simulations of complete experiments and dedicated test measurements. The new capture setup will be presented and the main achievements highlighted.
Address [Mendoza, E; Becares, V; Casado, A; Cano-Ott, D; Fernandez-Ordonez, M; Gonzalez-Romero, E; Guerrero, C; Martinez, T; Vidriales, JJ] Ctr Invest Energet Medioambientales & Tecnol, Madrid 28040, Spain, Email: emilio.mendoza@ciemat.es
Corporate Author Thesis
Publisher Korean Physical Soc Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0374-4884 ISBN Medium
Area Expedition Conference
Notes WOS:000294080700086 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ elepoucu @ Serial 738
Permanent link to this record
 

 
Author Plaza, J.; Bécares, V.; Cano-Ott, D.; Gómez, C.; Martínez, T.; Mendoza, E.; Perez de Rada, A.; Pesudo, V.; Sáez-Vergara, J.C.; Santorelli, R.; Villamarín, D.; Ianni, A.; Peña, C.; Balibrea-Correa, J.; Boeltzig, A.; Imbriani, G.
Title CLYC as a neutron detector in low background conditions Type Journal Article
Year 2023 Publication European Physical Journal C Abbreviated Journal Eur. Phys. J. C
Volume (up) 83 Issue 11 Pages 1049 - 10pp
Keywords
Abstract We report on the thermal neutron flux measurements carried out at the Laboratorio Subterraneo de Canfranc (LSC) with two commercial 2 '' x 2 '' CLYC detectors. The measurements were performed as part of an experimental campaign at LSC with He-3 detectors, for establishing the sensitivity limits and use of CLYCs in low background conditions. Acareful characterization of the intrinsic alpha and gamma-ray background in the detectors was required and done with dedicated measurements. It was found that the alpha activities in the two CLYC crystals differ by a factor of three, and the use of Monte Carlo simulations and a Bayesian unfolding method allowed us to determine the specific alpha activities from the U-238 and Th-232 decay chains. The simulations and unfolding also revealed that the gamma-ray background registered in the detectors is dominated by the intrinsic activity of the components of the detector such as the aluminum housing and photo-multiplier and that the activity within the crystal is low in comparison. The data from the neutron flux measurements with the two detectors were analyzed with different methodologies: one based on an innovative alpha/neutron pulse shape discrimination method and one based on the subtraction of the intrinsic alpha background that masks the neutron signals in the region of interest. The neutron sensitivity of the CLYCs was calculated by Monte Carlo simulations with MCNP6 and GEANT4. The resulting thermal neutron fluxes are in good agreement with complementary flux measurement performed with He-3 detectors, but close to the detection limit imposed by the intrinsic a activity.
Address [Plaza, J.; Becares, V.; Cano-Ott, D.; Gomez, C.; Martinez, T.; Mendoza, E.; de Rada, A. Perez; Pesudo, V.; Saez-Vergara, J. C.; Santorelli, R.; Villamarin, D.] Ctr Invest Energet Medioambientales & Tecnol, Avda Complutense 40, Madrid 28040, Spain, Email: julio.plaza@ciemat.es
Corporate Author Thesis
Publisher Springer Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1434-6044 ISBN Medium
Area Expedition Conference
Notes WOS:001105460800003 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 5835
Permanent link to this record
 

 
Author n_TOF Collaboration (Mendoza, E. et al); Domingo-Pardo, C.; Tain, J.L.
Title Measurement and analysis of the Am-243 neutron capture cross section at the n_TOF facility at CERN Type Journal Article
Year 2014 Publication Physical Review C Abbreviated Journal Phys. Rev. C
Volume (up) 90 Issue 3 Pages 034608 - 16pp
Keywords
Abstract Background: The design of new nuclear reactors and transmutation devices requires to reduce the present neutron cross section uncertainties of minor actinides. Purpose: Improvement of the Am-243(n, gamma) cross section uncertainty. Method: The Am-243(n, gamma) cross section has been measured at the n_TOF facility at CERN with a BaF2 total absorption calorimeter, in the energy range between 0.7 eV and 2.5 keV. Results: The Am-243(n, gamma) cross section has been successfully measured in the mentioned energy range. The resolved resonance region has been extended from 250 eV up to 400 eV. In the unresolved resonance region our results are compatible with one of the two incompatible capture data sets available below 2.5 keV. The data available in EXFOR and in the literature have been used to perform a simple analysis above 2.5 keV. Conclusions: The results of this measurement contribute to reduce the Am-243(n, gamma) cross section uncertainty and suggest that this cross section is underestimated up to 25% in the neutron energy range between 50 eV and a few keV in the present evaluated data libraries.
Address [Mendoza, E.; Cano-Ott, D.; Guerrero, C.; Alvarez-Velarde, F.; Balibrea, J.; Gonzalez-Romero, E.; Martinez, T.; Villamarin, D.; Vicente, M. C.] CIEMAT, E-28040 Madrid, Spain
Corporate Author Thesis
Publisher Amer Physical Soc Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0556-2813 ISBN Medium
Area Expedition Conference
Notes WOS:000341912100005 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 1935
Permanent link to this record
 

 
Author n_TOF Collaboration (Mendoza, E. et al); Giubrone, G.; Tain, J.L.; Tarifeño-Saldivia, A.
Title Measurement and analysis of the Am-241 neutron capture cross section at the n_TOF facility at CERN Type Journal Article
Year 2018 Publication Physical Review C Abbreviated Journal Phys. Rev. C
Volume (up) 97 Issue 5 Pages 054616 - 21pp
Keywords
Abstract The Am-241(n, gamma) cross section has been measured at the nTOF facility at CERN with the nTOF BaF2 Total Absorption Calorimeter in the energy range between 0.2 eV and 10 keV. Our results are analyzed as resolved resonances up to 700 eV, allowing a more detailed description of the cross section than in the current evaluations, which contain resolved resonances only up to 150-160 eV. The cross section in the unresolved resonance region is perfectly consistent with the predictions based on the average resonance parameters deduced from the resolved resonances, thus obtaining a consistent description of the cross section in the full neutron energy range under study. Below 20 eV, our results are in reasonable agreement with JEFF-3.2 as well as with the most recent direct measurements of the resonance integral, and differ up to 20-30% with other experimental data. Between 20 eV and 1 keV, the disagreement with other experimental data and evaluations gradually decreases, in general, with the neutron energy. Above 1 keV, we find compatible results with previously existing values.
Address [Mendoza, E.; Cano-Ott, D.; Balibrea, J.; Becares, V; Garcia, A. R.; Gonzalez, E.; Lopez, D.; Martinez, T.] Ctr Invest Energet Medioambientales & Tecnol CIEM, Madrid, Spain, Email: emilio.mendoza@ciemat.es
Corporate Author Thesis
Publisher Amer Physical Soc Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2469-9985 ISBN Medium
Area Expedition Conference
Notes WOS:000433032300001 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 3584
Permanent link to this record
 

 
Author Plaza, J.; Martinez, T.; Becares, V.; Cano-Ott, D.; Villamarin, D.; de Rada, A.P.; Mendoza, E.; Pesudo, V.; Santorelli, R.; Pena, C.; Balibrea-Correa, J.; Boeltzig, A.
Title Thermal neutron background at Laboratorio Subterraneo de Canfranc (LSC) Type Journal Article
Year 2023 Publication Astroparticle Physics Abbreviated Journal Astropart Phys.
Volume (up) 146 Issue Pages 102793 - 9pp
Keywords Underground neutron background; Thermal neutron flux; He-3 proportional counter; Pulse shape discrimination
Abstract The thermal neutron background at Laboratorio Subterraneo de Canfranc (LSC) has been determined using several He-3 proportional counter detectors. Bare and Cd shielded counters were used in a series of long measurements. Pulse shape discrimination techniques were applied to discriminate between neutron and gamma signals as well as other intrinsic contributions. Montecarlo simulations allowed us to estimate the sensitivity of the detectors and calculate values for the background flux of thermal neutrons inside Hall-A of LSC. The obtained value is (3.5 +/- 0.8)x10(-6) n/cm(2)s, and is within an order of magnitude compared to similar facilities.
Address [Plaza, J.; Martinez, T.; Becares, V; Cano-Ott, D.; Villamarin, D.; Perez de Rada, A.; Mendoza, E.; Pesudo, V; Santorelli, R.] Ctr Invest Energet Medioambientales & Tecnol CIEM, Ave Complutense 40, Madrid 28040, Spain, Email: julio.plaza@ciemat.es
Corporate Author Thesis
Publisher Elsevier Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0927-6505 ISBN Medium
Area Expedition Conference
Notes WOS:000928281600001 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 5482
Permanent link to this record
 

 
Author Guerrero, C.; Cano-Ott, D.; Mendoza, E.; Tain, J.L.; Algora, A.; Berthoumieux, E.; Colonna, N.; Domingo-Pardo, C.; Gonzalez-Romero, E.; Heil, M.; Jordan, D.; Kappeler, F.; Lampoudis, C.; Martinez, T.; Massimi, C.; Plag, R.
Title Monte Carlo simulation of the n_TOF Total Absorption Calorimeter Type Journal Article
Year 2012 Publication Nuclear Instruments & Methods in Physics Research A Abbreviated Journal Nucl. Instrum. Methods Phys. Res. A
Volume (up) 671 Issue Pages 108-117
Keywords Monte Carlo simulation; Geant4; Neutron cross-sections; Time-of-flight; Neutron capture
Abstract The n_TOF Total Absorption Calorimeter (TAC) is a 4 pi BaF2 segmented detector used at CERN for measuring neutron capture cross-sections of importance for the design of advanced nuclear reactors. This work presents the simulation code that has been developed in GEANT4 for the accurate determination of the detection efficiency of the TAC for neutron capture events. The code allows to calculate the efficiency of the TAC for every neutron capture state, as a function of energy, crystal multiplicity, and counting rate. The code includes all instrumental effects such as the single crystal detection threshold and energy resolution, finite size of the coincidence time window, and signal pile-up. The results from the simulation have been validated with experimental data for a large set of electromagnetic de-excitation patterns: beta-decay of well known calibration sources, neutron capture reactions in light nuclei with well known level schemes like Ti-nat, reference samples used in (n,gamma) measurements like Au-197 and experimental data from an actinide sample like Pu-240. The systematic uncertainty in the determination of the detection efficiency has been estimated for all the cases. As a representative example, the accuracy reached for the case of Au-197(n,gamma) ranges between 0.5% and 2%, depending on the experimental and analysis conditions. Such a value matches the high accuracy required for the nuclear cross-section data needed in advanced reactor design.
Address [Guerrero, C.; Cano-Ott, D.; Mendoza, E.; Gonzalez-Romero, E.; Martinez, T.] CIEMAT, Ctr Invest Energet Medioambientales & Tecnol, E-28040 Madrid, Spain, Email: carlos.guerrero@cern.ch
Corporate Author Thesis
Publisher Elsevier Science Bv Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0168-9002 ISBN Medium
Area Expedition Conference
Notes WOS:000301474600013 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 973
Permanent link to this record
 

 
Author Tain, J.L.; Agramunt, J.; Algora, A.; Aprahamian, A.; Cano-Ott, D.; Fraile, L.M.; Guerrero, C.; Jordan, M.D.; Mach, H.; Martinez, T.; Mendoza, E.; Mosconi, M.; Nolte, R.
Title The sensitivity of LaBr3:Ce scintillation detectors to low energy neutrons: Measurement and Monte Carlo simulation Type Journal Article
Year 2015 Publication Nuclear Instruments & Methods in Physics Research A Abbreviated Journal Nucl. Instrum. Methods Phys. Res. A
Volume (up) 774 Issue Pages 17-24
Keywords Neutron sensitivity; Scintillation detectors; Lanthanum bromide; Geant4 simulations; Nuclear data libraries
Abstract The neutron sensitivity of a cylindrical circle minus 1.5 in x 1.5 in LaBr3:Ce scintillation detector was measured using quasi-monoenergetic neutron beams in the energy range from 40 keV to 2.5 MeV. In this energy range the detector is sensitive to gamma-rays generated in neutron inelastic and capture processes. The experimental energy response was compared with Monte Carlo simulations performed with the Geant4 simulation toolkit using the so-called High Precision Neutron Models. These models rely on relevant information stored in evaluated nuclear data libraries. The performance of the Geant4 Neutron Data Library as well as several standard nuclear data libraries was investigated. In the latter case this was made possible by the use of a conversion tool that allowed the direct use of the data from other libraries in Geant4. Overall it was found that there was good agreement with experiment for some of the neutron data bases like ENDF/B-VII.0 or JENDL-3.3 but not with the others such as ENDF/B-VI.8 or JEFF-3.1.
Address [Tain, J. L.; Agramunt, J.; Algora, A.; Jordan, M. D.] Univ Valencia, CSIC, Inst Fis Corpuscular, E-28040 Valencia, Spain, Email: tain@ific.uv.es
Corporate Author Thesis
Publisher Elsevier Science Bv Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0168-9002 ISBN Medium
Area Expedition Conference
Notes WOS:000347407800003 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 2076
Permanent link to this record