|   | 
Details
   web
Records
Author Kasieczka, G. et al; Sanz, V.
Title The LHC Olympics 2020: a community challenge for anomaly detection in high energy physics Type Journal Article
Year 2021 Publication Reports on Progress in Physics Abbreviated Journal Rep. Prog. Phys.
Volume (up) 84 Issue 12 Pages 124201 - 64pp
Keywords anomaly detection; machine learning; unsupervised learning; weakly supervised learning; semisupervised learning; beyond the standard model; model-agnostic methods
Abstract A new paradigm for data-driven, model-agnostic new physics searches at colliders is emerging, and aims to leverage recent breakthroughs in anomaly detection and machine learning. In order to develop and benchmark new anomaly detection methods within this framework, it is essential to have standard datasets. To this end, we have created the LHC Olympics 2020, a community challenge accompanied by a set of simulated collider events. Participants in these Olympics have developed their methods using an R&D dataset and then tested them on black boxes: datasets with an unknown anomaly (or not). Methods made use of modern machine learning tools and were based on unsupervised learning (autoencoders, generative adversarial networks, normalizing flows), weakly supervised learning, and semi-supervised learning. This paper will review the LHC Olympics 2020 challenge, including an overview of the competition, a description of methods deployed in the competition, lessons learned from the experience, and implications for data analyses with future datasets as well as future colliders.
Address [Kasieczka, Gregor] Univ Hamburg, Inst Expt Phys, Hamburg, Germany, Email: gregor.kasieczka@uni-hamburg.de;
Corporate Author Thesis
Publisher IOP Publishing Ltd Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0034-4885 ISBN Medium
Area Expedition Conference
Notes WOS:000727698500001 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 5039
Permanent link to this record
 

 
Author Norena, J.; Verde, L.; Jimenez, R.; Pena-Garay, C.; Gomez, C.
Title Cancelling out systematic uncertainties Type Journal Article
Year 2012 Publication Monthly Notices of the Royal Astronomical Society Abbreviated Journal Mon. Not. Roy. Astron. Soc.
Volume (up) 419 Issue 2 Pages 1040-1050
Keywords methods: statistical; cosmology: theory
Abstract We present a method to minimize, or even cancel out, the nuisance parameters affecting a measurement. Our approach is general and can be applied to any experiment or observation where systematic errors are a concern e.g. are larger than statistical errors. We compare it with the Bayesian technique used to deal with nuisance parameters: marginalization, and show how the method compares and improves by avoiding biases. We illustrate the method with several examples taken from the astrophysics and cosmology world: baryonic acoustic oscillations (BAOs), cosmic clocks, Type Ia supernova (SNIa) luminosity distance, neutrino oscillations and dark matter detection. By applying the method we not only recover some known results but also find some interesting new ones. For BAO experiments we show how to combine radial and angular BAO measurements in order to completely eliminate the dependence on the sound horizon at radiation drag. In the case of exploiting SNIa as standard candles we show how the uncertainty in the luminosity distance by a second parameter modelled as a metallicity dependence can be eliminated or greatly reduced. When using cosmic clocks to measure the expansion rate of the universe, we demonstrate how a particular combination of observables nearly removes the metallicity dependence of the galaxy on determining differential ages, thus removing the agemetallicity degeneracy in stellar populations. We hope that these findings will be useful in future surveys to obtain robust constraints on the dark energy equation of state.
Address [Norena, Jorge; Verde, Licia; Jimenez, Raul] Univ Barcelona IEEC UB, ICREA, Barcelona 08028, Spain, Email: jorge.norena@icc.ub.edu
Corporate Author Thesis
Publisher Wiley-Blackwell Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0035-8711 ISBN Medium
Area Expedition Conference
Notes WOS:000298482300011 Approved no
Is ISI yes International Collaboration no
Call Number IFIC @ pastor @ Serial 890
Permanent link to this record
 

 
Author ANTARES and HESS Collaborations (Petroff, E. et al); Barrios-Marti, J.; Hernandez-Rey, J.J.; Illuminati, G.; Lotze, M.; Tönnis, C.; Zornoza, J.D.; Zuñiga, J.
Title A polarized fast radio burst at low Galactic latitude Type Journal Article
Year 2017 Publication Monthly Notices of the Royal Astronomical Society Abbreviated Journal Mon. Not. Roy. Astron. Soc.
Volume (up) 469 Issue 4 Pages 4465-4482
Keywords polarization; methods: data analysis; surveys; ISM: structure
Abstract We report on the discovery of a new fast radio burst (FRB), FRB 150215, with the Parkes radio telescope on 2015 February 15. The burst was detected in real time with a dispersion measure (DM) of 1105.6 +/- 0.8 pc cm(-3), a pulse duration of 2.8(-0.5)(+1.2) ms, and a measured peak flux density assuming that the burst was at beam centre of 0.7(-0.1)(+0.2) Jy. The FRB originated at a Galactic longitude and latitude of 24.66 degrees, 5.28 degrees and 25 degrees away from the Galactic Center. The burst was found to be 43 +/- 5 per cent linearly polarized with a rotation measure (RM) in the range -9 < RM < 12 rad m(-2) (95 per cent confidence level), consistent with zero. The burst was followed up with 11 telescopes to search for radio, optical, X-ray, gamma-ray and neutrino emission. Neither transient nor variable emission was found to be associated with the burst and no repeat pulses have been observed in 17.25 h of observing. The sightline to the burst is close to the Galactic plane and the observed physical properties of FRB 150215 demonstrate the existence of sight lines of anomalously low RM for a given electron column density. The Galactic RM foreground may approach a null value due to magnetic field reversals along the line of sight, a decreased total electron column density from the Milky Way, or some combination of these effects. A lower Galactic DM contribution might explain why this burst was detectable whereas previous searches at low latitude have had lower detection rates than those out of the plane.
Address [Petroff, E.; Rowlinson, A.] Netherlands Inst Radio Astron, ASTRON, Postbus 2, NL-7990 AA Dwingeloo, Netherlands
Corporate Author Thesis
Publisher Oxford Univ Press Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0035-8711 ISBN Medium
Area Expedition Conference
Notes WOS:000406837900051 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 3241
Permanent link to this record
 

 
Author ANTARES Collaboration (Bhandari, S. et al); Barrios-Marti, J.; Coleiro, A.; Hernandez-Rey, J.J.; Illuminati, G.; Tönnis, C.; Zornoza, J.D.; Zuñiga, J.
Title The SUrvey for Pulsars and Extragalactic Radio Bursts – II. New FRB discoveries and their follow-up Type Journal Article
Year 2018 Publication Monthly Notices of the Royal Astronomical Society Abbreviated Journal Mon. Not. Roy. Astron. Soc.
Volume (up) 475 Issue 2 Pages 1427-1446
Keywords radiation mechanisms: general; methods: data analysis; methods: observational; surveys; intergalactic medium; radio continuum: general
Abstract We report the discovery of four Fast Radio Bursts (FRBs) in the ongoing SUrvey for Pulsars and Extragalactic Radio Bursts at the Parkes Radio Telescope: FRBs 150610, 151206, 151230 and 160102. Our real-time discoveries have enabled us to conduct extensive, rapid multimessenger follow-up at 12 major facilities sensitive to radio, optical, X-ray, gamma-ray photons and neutrinos on time-scales ranging from an hour to a few months post-burst. No counterparts to the FRBs were found and we provide upper limits on afterglow luminosities. None of the FRBs were seen to repeat. Formal fits to all FRBs show hints of scattering while their intrinsic widths are unresolved in time. FRB 151206 is at low Galactic latitude, FRB 151230 shows a sharp spectral cut-off, and FRB 160102 has the highest dispersion measure (DM = 2596.1 +/- 0.3 pc cm(-3)) detected to date. Three of the FRBs have high dispersion measures (DM > 1500 pc cm(-3)), favouring a scenario where the DMis dominated by contributions from the intergalactic medium. The slope of the Parkes FRB source counts distribution with fluences > 2 Jy ms is alpha = – 2.2(-1.2)(+0.6) and still consistent with a Euclidean distribution (alpha = -3/2). We also find that the all-sky rate is 1.7(-0.9)(+1.5) x 10(3)FRBs/(4 pi sr)/day above similar to 2 Jy ms and there is currently no strong evidence for a latitude- dependent FRB sky rate.
Address [Bhandari, S.; Keane, E. F.; Barr, E. D.; Jameson, A.; Petroff, E.; Bailes, M.; Flynn, C.; Jankowski, F.; Krishnan, V. Venkatraman; Morello, V.; van Straten, W.; Andreoni, I.; Cooke, J.; Pritchard, T.] Swinburne Univ Technol, Ctr Astrophys & Supercomp, Mail H30,POB 218, Hawthorn, Vic 3122, Australia, Email: shivanibhandari58@gmail.com
Corporate Author Thesis
Publisher Oxford Univ Press Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0035-8711 ISBN Medium
Area Expedition Conference
Notes WOS:000427345900001 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 3518
Permanent link to this record
 

 
Author ANTARES Collaboration (Albert, A. et al); Barrios-Marti, J.; Coleiro, A.; Colomer, M.; Hernandez-Rey, J.J.; Illuminati, G.; Lotze, M.; Zornoza, J.D.; Zuñiga, J.
Title The search for high-energy neutrinos coincident with fast radio bursts with the ANTARES neutrino telescope Type Journal Article
Year 2019 Publication Monthly Notices of the Royal Astronomical Society Abbreviated Journal Mon. Not. Roy. Astron. Soc.
Volume (up) 482 Issue 1 Pages 184-193
Keywords acceleration of particles; neutrinos; astroparticle physics; radio continuum: transients; methods: data analysis
Abstract In the past decade, a new class of bright transient radio sources with millisecond duration has been discovered. The origin of these so-called fast radio bursts (FRBs) is still a mystery, despite the growing observational efforts made by various multiwavelength and multimessenger facilities. To date, many models have been proposed to explain FRBs, but neither the progenitors nor the radiative and the particle acceleration processes at work have been clearly identified. In this paper, we assess whether hadronic processes may occur in the vicinity of the FRB source. If they do, FRBs may contribute to the high-energy cosmic-ray and neutrino fluxes. A search for these hadronic signatures was carried out using the ANTARES neutrino telescope. The analysis consists in looking for high-energy neutrinos, in the TeV-PeV regime, that are spatially and temporally coincident with the detected FRBs. Most of the FRBs discovered in the period 2013-2017 were in the field of view of the ANTARES detector, which is sensitive mostly to events originating from the Southern hemisphere. From this period, 12 FRBs were selected and no coincident neutrino candidate was observed. Upper limits on the per-burst neutrino fluence were derived using a power-law spectrum, dN/DE nu proportional to E-nu(-gamma), for the incoming neutrino flux, assuming spectral indexes gamma = 1.0, 2.0, 2.5. Finally, the neutrino energy was constrained by computing the total energy radiated in neutrinos, assuming different distances for the FRBs. Constraints on the neutrino fluence and on the energy released were derived from the associated null results.
Address [Turpin, D.] Chinese Acad Sci, Natl Astron Observ, Key Lab Space Astron & Technol, Beijing 100101, Peoples R China, Email: dornic@cppm.in2p3.fr;
Corporate Author Thesis
Publisher Oxford Univ Press Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0035-8711 ISBN Medium
Area Expedition Conference
Notes WOS:000454575300014 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 3860
Permanent link to this record