|   | 
Details
   web
Records
Author Gariazzo, S.; Archidiacono, M.; de Salas, P.F.; Mena, O.; Ternes, C.A.; Tortola, M.
Title Neutrino masses and their ordering: global data, priors and models Type Journal Article
Year 2018 Publication Journal of Cosmology and Astroparticle Physics Abbreviated Journal J. Cosmol. Astropart. Phys.
Volume (up) 03 Issue 3 Pages 011 - 22pp
Keywords neutrino masses from cosmology; neutrino properties; cosmological parameters from CMBR; double beta decay
Abstract We present a full Bayesian analysis of the combination of current neutrino oscillation, neutrinoless double beta decay and Cosmic Microwave Background observations. Our major goal is to carefully investigate the possibility to single out one neutrino mass ordering, namely Normal Ordering or Inverted Ordering, with current data. Two possible parametrizations (three neutrino masses versus the lightest neutrino mass plus the two oscillation mass splittings) and priors (linear versus logarithmic) are exhaustively examined. We find that the preference for NO is only driven by neutrino oscillation data. Moreover, the values of the Bayes factor indicate that the evidence for NO is strong only when the scan is performed over the three neutrino masses with logarithmic priors; for every other combination of parameterization and prior, the preference for NO is only weak. As a by-product of our Bayesian analyses, we are able to (a) compare the Bayesian bounds on the neutrino mixing parameters to those obtained by means of frequentist approaches, finding a very good agreement; (b) determine that the lightest neutrino mass plus the two mass splittings parametrization, motivated by the physical observables, is strongly preferred over the three neutrino mass eigenstates scan and (c) find that logarithmic priors guarantee a weakly-to-moderately more efficient sampling of the parameter space. These results establish the optimal strategy to successfully explore the neutrino parameter space, based on the use of the oscillation mass splittings and a logarithmic prior on the lightest neutrino mass, when combining neutrino oscillation data with cosmology and neutrinoless double beta decay. We also show that the limits on the total neutrino mass Sigma m(nu) can change dramatically when moving from one prior to the other. These results have profound implications for future studies on the neutrino mass ordering, as they crucially state the need for self-consistent analyses which explore the best parametrization and priors, without combining results that involve different assumptions.
Address [Gariazzo, S.; de Salas, P. F.; Mena, O.; Ternes, C. A.; Tortola, M.] Univ Valencia, CSIC, Inst Fis Corpuscular, Parc Cient UV,C Catedrat Jose Beltran 2, E-46980 Paterna, Valencia, Spain, Email: gariazzo@ific.uv.es;
Corporate Author Thesis
Publisher Iop Publishing Ltd Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1475-7516 ISBN Medium
Area Expedition Conference
Notes WOS:000445497200001 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 3736
Permanent link to this record
 

 
Author Chen, P.; Centelles Chulia, S.; Ding, G.J.; Srivastava, R.; Valle, J.W.F.
Title CP symmetries as guiding posts: revamping tri-bi-maximal mixing. Part I Type Journal Article
Year 2019 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.
Volume (up) 03 Issue 3 Pages 036 - 27pp
Keywords CP violation; Discrete Symmetries; Neutrino Physics
Abstract We analyze the possible generalized CP symmetries admitted by the Tri-Bi-Maximal (TBM) neutrino mixing. Taking advantage of these symmetries we construct in a systematic way other variants of the standard TBM Ansatz. Depending on the type and number of generalized CP symmetries imposed, we get new mixing matrices, all of which related to the original TBM matrix. One of such revamped TBM variants is the recently discussed mixing matrix of arXiv:1806.03367. We also briefly discuss the phenomenological implications following from these mixing patterns.
Address [Chen, Peng] Ocean Univ China, Coll Informat Sci & Engn, 238 Songling Rd, Qingdao 266100, Shandong, Peoples R China, Email: pche@mail.ustc.edu.cn;
Corporate Author Thesis
Publisher Springer Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1029-8479 ISBN Medium
Area Expedition Conference
Notes WOS:000460751400004 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 3941
Permanent link to this record
 

 
Author Escudero, M.; Hooper, D.; Krnjaic, G.; Pierre, M.
Title Cosmology with a very light Lmu – Ltau gauge boson Type Journal Article
Year 2019 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.
Volume (up) 03 Issue 3 Pages 071 - 29pp
Keywords Cosmology of Theories beyond the SM; Beyond Standard Model; Neutrino Physics
Abstract In this paper, we explore in detail the cosmological implications of an abelian L – L gauge extension of the Standard Model featuring a light and weakly coupled Z. Such a scenario is motivated by the longstanding approximate to 4 sigma discrepancy between the measured and predicted values of the muon's anomalous magnetic moment, (g – 2), as well as the tension between late and early time determinations of the Hubble constant. If sufficiently light, the Z population will decay to neutrinos, increasing the overall energy density of radiation and altering the expansion history of the early universe. We identify two distinct regions of parameter space in this model in which the Hubble tension can be significantly relaxed. The first of these is the previously identified region in which a approximate to 10 – 20 MeV Z reaches equilibrium in the early universe and then decays, heating the neutrino population and delaying the process of neutrino decoupling. For a coupling of g (-) similar or equal to (3 – 8) x 10(-4), such a particle can also explain the observed (g – 2) anomaly. In the second region, the Z is very light (mZ approximate to 1eV to MeV) and very weakly coupled (g (-) approximate to 10(-13) to 10(-9)). In this case, the Z population is produced through freeze-in, and decays to neutrinos after neutrino decoupling. Across large regions of parameter space, we predict a contribution to the energy density of radiation that can appreciably relax the reported Hubble tension, N-eff similar or equal to 0.2.
Address [Escudero, Miguel] Kings Coll London, Dept Phys, London WC2R 2LS, England, Email: miguel.escudero@kcl.ac.uk;
Corporate Author Thesis
Publisher Springer Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1029-8479 ISBN Medium
Area Expedition Conference
Notes WOS:000461295500006 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 3945
Permanent link to this record
 

 
Author Bernabeu, J.; Segarra, A.
Title Do T asymmetries for neutrino oscillations in uniform matter have a CP-even component? Type Journal Article
Year 2019 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.
Volume (up) 03 Issue 3 Pages 103 - 12pp
Keywords CP violation; Discrete Symmetries; Neutrino Physics
Abstract Observables of neutrino oscillations in matter have, in general, contributions from the effective matter potential. It contaminates the CP violation asymmetry adding a fake effect that has been recently disentangled from the genuine one by their different behavior under T and CPT. Is the genuine T-odd CPT-invariant component of the CP asymmetry coincident with the T asymmetry? Contrary to CP, matter effects in uniform matter cannot induce by themselves a non-vanishing T asymmetry; however, the question of the title remained open. We demonstrate that, in the presence of genuine CP violation, there is a new non-vanishing CP-even, and so CPT-odd, component in the T asymmetry in matter, which is of odd-parity in both the phase delta of the flavor mixing and the matter parameter a. The two disentangled components, genuine A(alpha beta)(T;CP) and fake A(alpha beta)(T;CPT), could be experimentally separated by the measurement of the two T asymmetries in matter (nu(alpha) <-> nu(beta)) and ((nu) over bar <-> (nu) over bar (beta)). For the (nu(mu) <-> nu(e)) transitions, the energy dependence of the new A(mu e)(T;CPT) component is like the matter-induced term A(mu e)(CP;CPT) of the CP asymmetry which is odd under a change of the neutrino mass hierarchy. We have thus completed the physics involved in all observable asymmetries in matter by means of their disentanglement into the three independent components, genuine A(alpha beta)(CP;T) and fake A(alpha beta)(CP;CPT) and A(alpha beta)(T;CPT).
Address [Bernabeu, Jose] Univ Valencia, Dept Fis Teor, CSIC, E-46100 Valencia, Spain, Email: Jose.Bernabeu@uv.es;
Corporate Author Thesis
Publisher Springer Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1029-8479 ISBN Medium
Area Expedition Conference
Notes WOS:000462327100001 Approved no
Is ISI yes International Collaboration no
Call Number IFIC @ pastor @ Serial 3961
Permanent link to this record
 

 
Author Bhattacharya, A.; Esmaili, A.; Palomares-Ruiz, S.; Sarcevic, I.
Title Update on decaying and annihilating heavy dark matter with the 6-year IceCube HESE data Type Journal Article
Year 2019 Publication Journal of Cosmology and Astroparticle Physics Abbreviated Journal J. Cosmol. Astropart. Phys.
Volume (up) 03 Issue 5 Pages 051 - 30pp
Keywords dark matter theory; ultra high energy photons and neutrinos
Abstract In view of the IceCube's 6-year high-energy starting events (HESE) sample, we revisit the possibility that the updated data may be better explained by a combination of neutrino fluxes from dark matter decay and an isotropic astrophysical power-law than purely by the latter. We find that the combined two-component flux qualitatively improves the fit to the observed data over a purely astrophysical one, and discuss how these updated fits compare against a similar analysis done with the 4-year HESE data. We also update fits involving dark matter decay via multiple channels, without any contribution from the astrophysical flux. We find that a DM-only explanation is not excluded by neutrino data alone. Finally, we also consider the possibility of a signal from dark matter annihilations and perform analogous analyses to the case of decays, commenting on its implications.
Address [Bhattacharya, Atri] Univ Liege, Space Sci Technol & Astrophys Res STAR Inst, Bat B5a, B-4000 Liege, Belgium, Email: a.bhattacharya@ulg.ac.be;
Corporate Author Thesis
Publisher Iop Publishing Ltd Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1475-7516 ISBN Medium
Area Expedition Conference
Notes WOS:000469808500001 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 4038
Permanent link to this record
 

 
Author Barenboim, G.; Martinez-Mirave, P.; Ternes, C.A.; Tortola, M.
Title Sterile neutrinos with altered dispersion relations revisited Type Journal Article
Year 2020 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.
Volume (up) 03 Issue 3 Pages 070 - 18pp
Keywords Beyond Standard Model; Neutrino Physics
Abstract In this paper we investigate neutrino oscillations with altered dispersion relations in the presence of sterile neutrinos. Modified dispersion relations represent an agnostic way to parameterize new physics. Models of this type have been suggested to explain global neutrino oscillation data, including deviations from the standard three-neutrino paradigm as observed by a few experiments. We show that, unfortunately, in this type of models new tensions arise turning them incompatible with global data.
Address [Barenboim, G.; Martinez-Mirave, P.; Ternes, C. A.; Tortola, M.] Univ Valencia, CSIC, Inst Fis Corpuscular, C Catedrat Jose Beltran 2, Paterna 46980, Spain, Email: Gabriela.Barenboim@uv.es;
Corporate Author Thesis
Publisher Springer Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1029-8479 ISBN Medium
Area Expedition Conference
Notes WOS:000520538500003 Approved no
Is ISI yes International Collaboration no
Call Number IFIC @ pastor @ Serial 4333
Permanent link to this record
 

 
Author Barducci, D.; Bertuzzo, E.; Caputo, A.; Hernandez, P.; Mele, B.
Title The see-saw portal at future Higgs Factories Type Journal Article
Year 2021 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.
Volume (up) 03 Issue 3 Pages 117 - 32pp
Keywords Beyond Standard Model; Higgs Physics; Neutrino Physics
Abstract We consider an extension of the Standard Model with two right-handed singlet fermions with mass at the electroweak scale that induce neutrino masses, plus a generic new physics sector at a higher scale Lambda. We focus on the effective operators of lowest dimension d = 5, which induce new production and decay modes for the singlet fermions. We assess the sensitivity of future Higgs Factories, such as FCC-ee, CLIC-380, ILC and CEPC, to the coefficients of these operators for various center of mass energies. We show that future lepton colliders can test the cut-off of the theory up to Lambda similar or equal to 500-1000 TeV, surpassing the reach of future indirect measurements of the Higgs and Z boson widths. We also comment on the possibility of determining the underlying model flavor structure should a New Physics signal be observed, and on the impact of higher dimensional d = 6 operators on the experimental signatures.
Address [Barducci, Daniele] Univ Roma Sapienza, Piazzale Aldo Moro 5, I-00185 Rome, Italy, Email: daniele.barducci@roma1.infn.it;
Corporate Author Thesis
Publisher Springer Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1029-8479 ISBN Medium
Area Expedition Conference
Notes WOS:000629645800001 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 4766
Permanent link to this record
 

 
Author Escribano, P.; Vicente, A.
Title Ultralight scalars in leptonic observables Type Journal Article
Year 2021 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.
Volume (up) 03 Issue 3 Pages 240 - 37pp
Keywords Beyond Standard Model; CP violation; Neutrino Physics
Abstract Many new physics scenarios contain ultralight scalars, states which are either exactly massless or much lighter than any other massive particle in the model. Axions and majorons constitute well-motivated examples of this type of particle. In this work, we explore the phenomenology of these states in low-energy leptonic observables. After adopting a model independent approach that includes both scalar and pseudoscalar interactions, we briefly discuss the current limits on the diagonal couplings to charged leptons and consider processes in which the ultralight scalar phi is directly produced, such as μ-> e phi, or acts as a mediator, as in tau -> μμmu. Contributions to the charged leptons magnetic and electric moments are studied as well.
Address [Escribano, Pablo; Vicente, Avelino] Univ Valencia, CSIC, Inst Fis Corpuscular, C Catedrat Jose Beltran 2, E-46980 Valencia, Spain, Email: pablo.escribano@ific.uv.es;
Corporate Author Thesis
Publisher Springer Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1029-8479 ISBN Medium
Area Expedition Conference
Notes WOS:000635264700005 Approved no
Is ISI yes International Collaboration no
Call Number IFIC @ pastor @ Serial 4769
Permanent link to this record
 

 
Author Centelles Chulia, S.; Srivastava, R.; Vicente, A.
Title The inverse seesaw family: Dirac and Majorana Type Journal Article
Year 2021 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.
Volume (up) 03 Issue 3 Pages 248 - 29pp
Keywords Beyond Standard Model; Neutrino Physics; Global Symmetries
Abstract After developing a general criterion for deciding which neutrino mass models belong to the category of inverse seesaw models, we apply it to obtain the Dirac analogue of the canonical Majorana inverse seesaw model. We then generalize the inverse seesaw model and obtain a class of inverse seesaw mechanisms both for Majorana and Dirac neutrinos. We further show that many of the models have double or multiple suppressions coming from tiny symmetry breaking “mu -parameters”. These models can be tested both in colliders and with the observation of lepton flavour violating processes.
Address [Centelles Chulia, Salvador; Vicente, Avelino] Univ Valencia, CSIC, Inst Fis Corpuscular, AHEP Grp, Parc Cientif Paterna,C Catedrat Jose Beltran 2, E-46980 Paterna, Valencia, Spain, Email: salcen@ific.uv.es;
Corporate Author Thesis
Publisher Springer Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1029-8479 ISBN Medium
Area Expedition Conference
Notes WOS:000635241800001 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 4772
Permanent link to this record
 

 
Author Mandal, S.; Srivastava, R.; Valle, J.W.F.
Title Electroweak symmetry breaking in the inverse seesaw mechanism Type Journal Article
Year 2021 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.
Volume (up) 03 Issue 3 Pages 212 - 28pp
Keywords Beyond Standard Model; Neutrino Physics
Abstract We investigate the stability of Higgs potential in inverse seesaw models. We derive the full two-loop RGEs of the relevant parameters, such as the quartic Higgs self-coupling, taking thresholds into account. We find that for relatively large Yukawa couplings the Higgs quartic self-coupling goes negative well below the Standard Model instability scale similar to 10(10) GeV. We show, however, that the “dynamical” inverse seesaw with spontaneous lepton number violation can lead to a completely consistent and stable Higgs vacuum up to the Planck scale.
Address [Mandal, Sanjoy; Valle, Jose W. F.] Univ Valencia, Inst Fis Corpuscular, AHEP Grp, CSIC, Parc Cient Paterna,C Catedrat Jose Beltran 2, E-46980 Paterna, Valencia, Spain, Email: smandal@ific.uv.es;
Corporate Author Thesis
Publisher Springer Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1029-8479 ISBN Medium
Area Expedition Conference
Notes WOS:000634824700004 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 4780
Permanent link to this record