|   | 
Details
   web
Records
Author DUNE Collaboration (Abi, B. et al); Antonova, M.; Barenboim, G.; Cervera-Villanueva, A.; De Romeri, V.; Fernandez Menendez, P.; Garcia-Peris, M.A.; Izmaylov, A.; Martin-Albo, J.; Masud, M.; Mena, O.; Novella, P.; Sorel, M.; Ternes, C.A.; Tortola, M.; Valle, J.W.F.
Title Volume III DUNE far detector technical coordination Type Journal Article
Year 2020 Publication Journal of Instrumentation Abbreviated Journal J. Instrum.
Volume (up) 15 Issue 8 Pages T08009 - 193pp
Keywords
Abstract The preponderance of matter over antimatter in the early universe, the dynamics of the supernovae that produced the heavy elements necessary for life, and whether protons eventually decay—these mysteries at the forefront of particle physics and astrophysics are key to understanding the early evolution of our universe, its current state, and its eventual fate. The Deep Underground Neutrino Experiment (DUNE) is an international world-class experiment dedicated to addressing these questions as it searches for leptonic charge-parity symmetry violation, stands ready to capture supernova neutrino bursts, and seeks to observe nucleon decay as a signature of a grand unified theory underlying the standard model. The DUNE far detector technical design report (TDR) describes the DUNE physics program and the technical designs of the single- and dual-phase DUNE liquid argon TPC far detector modules. Volume III of this TDR describes how the activities required to design, construct, fabricate, install, and commission the DUNE far detector modules are organized and managed. This volume details the organizational structures that will carry out and/or oversee the planned far detector activities safely, successfully, on time, and on budget. It presents overviews of the facilities, supporting infrastructure, and detectors for context, and it outlines the project-related functions and methodologies used by the DUNE technical coordination organization, focusing on the areas of integration engineering, technical reviews, quality assurance and control, and safety oversight. Because of its more advanced stage of development, functional examples presented in this volume focus primarily on the single-phase (SP) detector module.
Address [Abi, B.; Azfar, F.; Barr, G.; Kabirnezhad, M.; Reynolds, A.; Rodrigues, P.; Spagliardi, F.; Weber, A.] Univ Oxford, Oxford OX1 3RH, England
Corporate Author Thesis
Publisher Iop Publishing Ltd Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1748-0221 ISBN Medium
Area Expedition Conference
Notes WOS:000635160500001 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 4786
Permanent link to this record
 

 
Author DUNE Collaboration (Abud, A.A. et al); Antonova, M.; Barenboim, G.; Cervera-Villanueva, A.; De Romeri, V.; Fernandez Menendez, P.; Garcia-Peris, M.A.; Izmaylov, A.; Martin-Albo, J.; Masud, M.; Mena, O.; Molina Bueno, L.; Novella, P.; Rubio, F.C.; Sorel, M.; Ternes, C.A.; Tortola, M.; Valle, J.W.F.
Title Design, construction and operation of the ProtoDUNE-SP Liquid Argon TPC Type Journal Article
Year 2022 Publication Journal of Instrumentation Abbreviated Journal J. Instrum.
Volume (up) 17 Issue 1 Pages P01005 - 111pp
Keywords Noble liquid detectors (scintillation, ionization, double-phase); Photon detectors for UV; visible and IR photons (solid-state) (PIN diodes, APDs, Si-PMTs, G-APDs, CCDs, EBCCDs, EMCCDs, CMOS imagers, etc); Scintillators; scintillation and light emission processes (solid, gas and liquid scintillators); Time projection Chambers (TPC)
Abstract The ProtoDUNE-SP detector is a single-phase liquid argon time projection chamber (LArTPC) that was constructed and operated in the CERN North Area at the end of the H4 beamline. This detector is a prototype for the first far detector module of the Deep Underground Neutrino Experiment (DUNE), which will be constructed at the Sandford Underground Research Facility (SURF) in Lead, South Dakota, U.S.A. The ProtoDUNE-SP detector incorporates full-size components as designed for DUNE and has an active volume of 7 x 6 x 7.2 m3. The H4 beam delivers incident particles with well-measured momenta and high-purity particle identification. ProtoDUNE-SP's successful operation between 2018 and 2020 demonstrates the effectiveness of the single-phase far detector design. This paper describes the design, construction, assembly and operation of the detector components.
Address [Fani, M.; Isenhower, L.] Abilene Christian Univ, Abilene, TX 79601 USA, Email: Stefania.Bordoni@cern.ch
Corporate Author Thesis
Publisher IOP Publishing Ltd Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1748-0221 ISBN Medium
Area Expedition Conference
Notes WOS:000757487100001 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 5131
Permanent link to this record
 

 
Author T2K Collaboration (Abe, K. et al); Antonova, M.; Cervera-Villanueva, A.; Molina Bueno, L.; Novella, P.
Title Scintillator ageing of the T2K near detectors fro 2010 to 2021 Type Journal Article
Year 2022 Publication Journal of Instrumentation Abbreviated Journal J. Instrum.
Volume (up) 17 Issue 10 Pages P10028 - 36pp
Keywords Gamma detectors (scintillators, CZT, HPGe, HgI etc); Neutrino detectors; Performance of High Energy Physics Detectors; Scintillators; scintillation and light emission processes (solid, gas and liquid scintillators)
Abstract The T2K experiment widely uses plastic scintillator as a target for neutrino interactions and an active medium for the measurement of charged particles produced in neutrino interactions at its near detector complex. Over 10 years of operation the measured light yield recorded by the scintillator based subsystems has been observed to degrade by 0.9-2.2% per year. Extrapolation of the degradation rate through to 2040 indicates the recorded light yield should remain above the lower threshold used by the current reconstruction algorithms for all subsystems. This will allow the near detectors to continue contributing to important physics measurements during the T2K-II and Hyper-Kamiokande eras. Additionally, work to disentangle the degradation of the plastic scintillator and wavelength shifting fibres shows that the reduction in light yield can be attributed to the ageing of the plastic scintillator. The long component of the attenuation length of the wavelength shifting fibres was observed to degrade by 1.3-5.4% per year, while the short component of the attenuation length did not show any conclusive degradation.
Address [Labarga, L.] Univ Autonoma Madrid, Dept Theoret Phys, ES-28049 Madrid, Spain, Email: m.lawe@lancaster.ac.uk
Corporate Author Thesis
Publisher IOP Publishing Ltd Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1748-0221 ISBN Medium
Area Expedition Conference
Notes WOS:000898723700007 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 5442
Permanent link to this record
 

 
Author DUNE Collaboration (Abud, A.A. et al); Amedo, P.; Antonova, M.; Barenboim, G.; Cervera-Villanueva, A.; De Romeri, V.; Garcia-Peris, M.A.; Martin-Albo, J.; Martinez-Mirave, P.; Mena, O.; Molina Bueno, L.; Novella, P.; Pompa, F.; Rocabado Rocha, J.L.; Sorel, M.; Tortola, M.; Tuzi, M.; Valle, J.W.F.; Yahlali, N.
Title Highly-parallelized simulation of a pixelated LArTPC on a GPU Type Journal Article
Year 2023 Publication Journal of Instrumentation Abbreviated Journal J. Instrum.
Volume (up) 18 Issue 4 Pages P04034 - 35pp
Keywords Detector modelling and simulations II (electric fields, charge transport, multiplication, and induction, pulse formation, electron emission, etc); Simulation methods and programs; Nobleliquid detectors (scintillation, ionization, double-phase); Time projection Chambers (TPC)
Abstract The rapid development of general-purpose computing on graphics processing units (GPGPU) is allowing the implementation of highly-parallelized Monte Carlo simulation chains for particle physics experiments. This technique is particularly suitable for the simulation of a pixelated charge readout for time projection chambers, given the large number of channels that this technology employs. Here we present the first implementation of a full microphysical simulator of a liquid argon time projection chamber (LArTPC) equipped with light readout and pixelated charge readout, developed for the DUNE Near Detector. The software is implemented with an end-to-end set of GPU-optimized algorithms. The algorithms have been written in Python and translated into CUDA kernels using Numba, a just-in-time compiler for a subset of Python and NumPy instructions. The GPU implementation achieves a speed up of four orders of magnitude compared with the equivalent CPU version. The simulation of the current induced on 103 pixels takes around 1 ms on the GPU, compared with approximately 10 s on the CPU. The results of the simulation are compared against data from a pixel-readout LArTPC prototype.
Address [Isenhower, L.] Abilene Christian Univ, Abilene, TX 79601 USA, Email: roberto@lbl.gov
Corporate Author Thesis
Publisher IOP Publishing Ltd Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1748-0221 ISBN Medium
Area Expedition Conference
Notes WOS:000986658100009 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 5551
Permanent link to this record
 

 
Author T2K Collaboration (Abe, K. et al); Antonova, M.; Cervera-Villanueva, A.; Fernandez, P.; Izmaylov, A.; Novella, P.
Title Search for neutral-current induced single photon production at the ND280 near detector in T2K Type Journal Article
Year 2019 Publication Journal of Physics G Abbreviated Journal J. Phys. G
Volume (up) 46 Issue 8 Pages 08LT01 - 16pp
Keywords T2K; neutrino; neutrino oscillation; neutrino interaction; Mini-BooNE; CP violation
Abstract Neutrino neutral-current (NC) induced single photon production is a sub-leading order process for accelerator-based neutrino beam experiments including T2K. It is, however, an important process to understand because it is a background for electron (anti)neutrino appearance oscillation experiments. Here, we performed the first search of this process below 1 GeV using the fine-grained detector at the T2K ND280 off-axis near detector. By reconstructing single photon kinematics from electron-positron pairs, we achieved 95% pure gamma ray sample from 5.738 x 10(20) protons-on-targets neutrino mode data. We do not find positive evidence of NC induced single photon production in this sample. We set the model-dependent upper limit on the cross-section for this process, at 0.114 x 10(-38) cm(2) (90% C.L.) per nucleon, using the J-PARC off-axis neutrino beam with an average energy of < E-v > similar to 0.6 GeV. This is the first limit on this process below 1 GeV which is important for current and future oscillation experiments looking for electron neutrino appearance oscillation signals.
Address [Berguno, D. Bravo; Ishii, T.; Labarga, L.] Univ Autonoma Madrid, Dept Theoret Phys, Madrid, Spain
Corporate Author Thesis
Publisher Iop Publishing Ltd Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0954-3899 ISBN Medium
Area Expedition Conference
Notes WOS:000518888100001 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 4318
Permanent link to this record