toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Xie, J.J.; Geng, L.S.; Oset, E. url  doi
openurl 
  Title f(2)(1810) as a triangle singularity Type Journal Article
  Year 2017 Publication Physical Review D Abbreviated Journal Phys. Rev. D  
  Volume (up) 95 Issue 3 Pages 034004 - 6pp  
  Keywords  
  Abstract We perform calculations showing that a source producing K*K* in J = 2 and L = 0 gives rise to a triangle singularity at 1810 MeV with a width of about 200 MeV from the mechanism K*-> pi K and then KK* merging into the a alpha(1)(1260) resonance. We suggest that this is the origin of the present f(2)(1810) resonance and propose to look at the pa pi alpha(1)(1260) mode in several reactions to clarify the issue.  
  Address [Xie, Ju-Jun; Oset, E.] Chinese Acad Sci, Inst Modern Phys, Lanzhou 730000, Peoples R China, Email: lisheng.geng@buaa.edu.cn  
  Corporate Author Thesis  
  Publisher Amer Physical Soc Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2470-0010 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000393509100003 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 2960  
Permanent link to this record
 

 
Author Wang, E.; Xie, J.J.; Geng, L.S.; Oset, E. url  doi
openurl 
  Title Analysis of the B+ -> J/Psi phi K+ data at low J/Psi phi invariant masses and the X(4140) and X(4160) resonances Type Journal Article
  Year 2018 Publication Physical Review D Abbreviated Journal Phys. Rev. D  
  Volume (up) 97 Issue 1 Pages 014017 - 6pp  
  Keywords  
  Abstract We have studied the J/Psi phi mass distribution of the B+ -> J/Psi phi K+ reaction from threshold to about 4250 MeV, and find that one needs the contribution of the X(4140) with a narrow width, together with the X(4160) which accounts for most of the strength of the distribution in that region. The existence of a clear cusp at the D-s*(D) over bar (s)* threshold indicates that the X(4160) resonance is strongly tied to the D-s*(D) over bar (s)* channel, which finds a natural interpretation in the molecular picture of this resonance.  
  Address [Wang, En] Zhengzhou Univ, Dept Phys, Zhengzhou 450001, Henan, Peoples R China  
  Corporate Author Thesis  
  Publisher Amer Physical Soc Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2470-0010 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000423429400007 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 3463  
Permanent link to this record
 

 
Author Sun, Z.F.; Xie, J.J.; Oset, E. url  doi
openurl 
  Title Bottom strange molecules with isospin 0 Type Journal Article
  Year 2018 Publication Physical Review D Abbreviated Journal Phys. Rev. D  
  Volume (up) 97 Issue 9 Pages 094031 - 9pp  
  Keywords  
  Abstract Using the local hidden gauge approach, we study the possibility of the existence of bottom strange molecular states with isospin 0. We find three bound states with spin parity 0(+), 1(+), and 2(+) generated by the (K) over bar *B* and omega B-s(*) interaction, among which the state with spin 2 can be identified as B(s2)(*()5840). In addition, we also study the (K) over bar *B* and omega B-s(*) interaction and find a bound state which can be associated to B-s1(5830). In addition, the (K) over barB*, eta B-s(*)(K) over barB, and eta B-s systems are studied, and two bound states are predicted. We expect that further experiments can confirm our predictions.  
  Address [Sun, Zhi-Feng] Lanzhou Univ, Sch Phys Sci & Technol, Lanzhou 730000, Peoples R China, Email: sunzf@lzu.edu.cn;  
  Corporate Author Thesis  
  Publisher Amer Physical Soc Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2470-0010 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000433912000003 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 3615  
Permanent link to this record
 

 
Author Dias, J.M.; Debastiani, V.R.; Xie, J.J.; Oset, E. url  doi
openurl 
  Title Doubly charmed Xi(cc) molecular states from meson-baryon interaction Type Journal Article
  Year 2018 Publication Physical Review D Abbreviated Journal Phys. Rev. D  
  Volume (up) 98 Issue 9 Pages 094017 - 11pp  
  Keywords  
  Abstract Stimulated by the new experimental LHCb findings associated with the Omega(c) states, some of which we have described in a previous work as being dynamically generated through meson-baryon interaction, we have extended this approach to make predictions for new Xi(cc) molecular states in the C = 2, S = 0, and I = 1/2 sector. These states manifest themselves as poles in the solution of the Bethe-Salpeter equation in coupled channels. The kernels of this equation were obtained using general Lagrangians coming from the hidden local gauge symmetry or massive Yang-Mills theory, and the interactions are dominated by the exchange of light vector mesons. The extension of this approach to the heavy sector stems from the realization that the dominant interaction corresponds to having the heavy quarks as spectators, which implies the preservation of the heavy quark symmetry. As a result, we get several states: three states from the pseudoscalar meson-baryon interaction with J(P) = 1/2(-), and masses around 3840, 4080 and 4090 MeV, and two at 3920 and 4150 MeV for J(P) = 3/2(-). Furthermore, from the vector meson-baryon interaction we get three states degenerate with J(P) 1/2(-) and 3/2(-) from 4220 MeV to 4290 MeV, and two more states around 4280 and 4370 MeV, degenerate with J(P) = 1/2(-), 3/2(-), and 5/2(-).  
  Address [Dias, J. M.; Debastiani, V. R.; Xie, Ju-Jun; Oset, E.] Chinese Acad Sci, Inst Modern Phys, Lanzhou 730000, Gansu, Peoples R China, Email: jdias@if.usp.br;  
  Corporate Author Thesis  
  Publisher Amer Physical Soc Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2470-0010 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000451000200002 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 3816  
Permanent link to this record
 

 
Author Xie, J.J.; Albaladejo, M.; Oset, E. url  doi
openurl 
  Title Signature of an h(1) state in the J/psi -> eta h(1) -> eta K*(0)(K)over-bar*(0) decay Type Journal Article
  Year 2014 Publication Physics Letters B Abbreviated Journal Phys. Lett. B  
  Volume (up) 728 Issue Pages 319-322  
  Keywords  
  Abstract The BES data on the J/psi -> eta K*(0)(K) over bar*(0) reaction show a clear enhancement in the K*(0)(K) over bar*(0) mass distribution close to the threshold of this channel. Such an enhancement is usually a signature of an L = 0 resonance around threshold, which in this case would correspond to an h1 state with quantum numbers I-G(J(Pc))= 0(-)(1(+-)). A state around 1800 MeV results from the interaction of the K*TC* using the local hidden gauge approach. We show that the peak observed in J/psi -> eta K*(0)(K) over bar*(0) naturally comes from the creation of this h(1) state with mass and width around 1830 MeV and 110 MeV, respectively. A second analysis, model independent, corroborates the first result, confirming the relationship of the enhancement in the invariant mass spectrum with the h(1) resonance.  
  Address [Xie, Ju-Jun] Chinese Acad Sci, Inst Modern Phys, Lanzhou 730000, Peoples R China, Email: albaladejo@ipno.in2p3.fr  
  Corporate Author Thesis  
  Publisher Elsevier Science Bv Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0370-2693 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000330556000052 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 1706  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records:
ific federMinisterio de Ciencia e InnovaciĆ³nAgencia Estatal de Investigaciongva