FCC Collaboration(Abada, A. et al), Aguilera-Verdugo, J. J., Hernandez, P., Ramirez-Uribe, N. S., Renteria-Olivo, A. E., Rodrigo, G., et al. (2019). FCC Physics Opportunities: Future Circular Collider Conceptual Design Report Volume 1. Eur. Phys. J. C, 79(6), 474–161pp.
Abstract: We review the physics opportunities of the Future Circular Collider, covering its e(+)e(-), pp, ep and heavy ion programmes. We describe the measurement capabilities of each FCC component, addressing the study of electroweak, Higgs and strong interactions, the top quark and flavour, as well as phenomena beyond the Standard Model. We highlight the synergy and complementarity of the different colliders, which will contribute to a uniquely coherent and ambitious research programme, providing an unmatchable combination of precision and sensitivity to new physics.
|
Fileviez Perez, P., Iminniyaz, H., Rodrigo, G., & Spinner, S. (2010). Gauge mediated supersymmetry breaking via seesaw mechanisms. Phys. Rev. D, 81(9), 095013–12pp.
Abstract: We present a simple scenario for gauge mediated supersymmetry breaking (GMSB) where the messengers are also the fields that generate neutrino masses. We show that the simplest such scenario corresponds to the case where neutrino masses are generated through the type I and type III seesaw mechanisms. The entire supersymmetric spectrum and Higgs masses are calculable from only four input parameters. Since the electroweak symmetry is broken through a doubly radiative mechanism, meaning a nearly zero B term at the messenger scale which runs down to acceptable values, one obtains quite a constrained spectrum for the supersymmetric particles whose properties we describe. We refer to this mechanism as "nu GMSB.''
|
Torres Bobadilla, W. J. et al, Driencourt-Mangin, F., & Rodrigo, G. (2021). May the four be with you: novel IR-subtraction methods to tackle NNLO calculations. Eur. Phys. J. C, 81(3), 250–61pp.
Abstract: In this manuscript, we report the outcome of the topical workshop: paving the way to alternative NNLO strategies (https://indico.ific.uv.es/e/WorkStop-ThinkStart_3.0), by presenting a discussion about different frameworks to perform precise higher-order computations for high-energy physics. These approaches implement novel strategies to deal with infrared and ultraviolet singularities in quantum field theories. A special emphasis is devoted to the local cancellation of these singularities, which can enhance the efficiency of computations and lead to discover novel mathematical properties in quantum field theories.
|
Plenter, J., & Rodrigo, G. (2021). Asymptotic expansions through the loop-tree duality. Eur. Phys. J. C, 81(4), 320–13pp.
Abstract: Asymptotic expansions of Feynman amplitudes in the loop-tree duality formalism are implemented at integrand-level in the Euclidean space of the loop three-momentum, where the hierarchies among internal and external scales are well-defined. The ultraviolet behaviour of the individual contributions to the asymptotic expansion emerges only in the first terms of the expansion and is renormalized locally in four space-time dimensions. These two properties represent an advantage over the method of Expansion by Regions. We explore different approaches in different kinematical limits, and derive explicit asymptotic expressions for several benchmark configurations.
|
Campanario, F., Czyz, H., Gluza, J., Jelinski, T., Rodrigo, G., Tracz, S., et al. (2019). Standard model radiative corrections in the pion form factor measurements do not explain the a(mu) anomaly. Phys. Rev. D, 100(7), 076004–5pp.
Abstract: In this paper, we address the question of whether the almost four standard deviations difference between theory and experiment for the muon anomalous magnetic moment a(mu) can be explained as a higher-order Standard Model perturbation effect in the pion form factor measurements. This question has, until now, remained open, obscuring the source of discrepancies between the measurements. We calculate the last radiative corrections for the extraction of the pion form factor, which were believed to be potentially substantial enough to explain the data within the Standard Model. We find that the corrections are too small to diminish existing discrepancies in the determination of the pion form factor for different kinematical configurations of low-energy BABAR, BES-III and KLOE experiments. Consequently, they cannot noticeably change the previous predictions for a(mu) and decrease the deviations between theory and direct measurements. To solve the above issues, new data and better understanding of low-energy experimental setups are needed, especially as new direct a(mu) measurements at Fermilab and J-PARC will provide new insights and substantially shrink the experimental error.
|