toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Mosbech, M.R.; Boehm, C.; Hannestad, S.; Mena, O.; Stadler, J.; Wong, Y.Y.Y. url  doi
openurl 
  Title The full Boltzmann hierarchy for dark matter-massive neutrino interactions Type Journal Article
  Year 2021 Publication Journal of Cosmology and Astroparticle Physics Abbreviated Journal J. Cosmol. Astropart. Phys.  
  Volume (up) 03 Issue 3 Pages 066 - 31pp  
  Keywords cosmological perturbation theory; dark matter theory; neutrino properties; particle physics – cosmology connection  
  Abstract The impact of dark matter-neutrino interactions on the measurement of the cosmological parameters has been investigated in the past in the context of massless neutrinos exclusively. Here we revisit the role of a neutrino-dark matter coupling in light of ongoing cosmological tensions by implementing the full Boltzmann hierarchy for three massive neutrinos. Our tightest 95% CL upper limit on the strength of the interactions, parameterized via u(chi) = sigma(0)/sigma(Th) (m(chi)/100GeV)(-1), is u(chi) <= 3.34 . 10(-4), arising from a combination of Planck TTTEEE data, Planck lensing data and SDSS BAO data. This upper bound is, as expected, slightly higher than previous results for interacting massless neutrinos, due to the correction factor associated with neutrino masses. We find that these interactions significantly relax the lower bounds on the value of sigma 8 that is inferred in the context of Lambda CDM from the Planck data, leading to agreement within 1-2 sigma with weak lensing estimates of sigma 8, as those from KiDS1000. However, the presence of these interactions barely affects the value of the Hubble constant H-0.  
  Address [Mosbech, Markus R.; Boehm, Celine] Univ Sydney, Sch Phys, Camperdown, NSW 2006, Australia, Email: mmos6302@uni.sydney.edu.au;  
  Corporate Author Thesis  
  Publisher Iop Publishing Ltd Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1475-7516 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000636717400061 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 4783  
Permanent link to this record
 

 
Author ATLAS Collaboration (Aad, G. et al); Aparisi Pozo, J.A.; Bailey, A.J.; Cabrera Urban, S.; Cardillo, F.; Castillo, F.L.; Castillo Gimenez, V.; Costa, M.J.; Escobar, C.; Estrada Pastor, O.; Ferrer, A.; Fiorini, L.; Fullana Torregrosa, E.; Fuster, J.; Garcia, C.; Garcia Navarro, J.E.; Gonzalez de la Hoz, S.; Gonzalvo Rodriguez, G.R.; Guerrero Rojas, J.G.R.; Higon-Rodriguez, E.; Lacasta, C.; Lozano Bahilo, J.J.; Mamuzic, J.; Marti-Garcia, S.; Martinez Agullo, P.; Mitsou, V.A.; Moreno Llacer, M.; Navarro-Gonzalez, J.; Poveda, J.; Prades Ibañez, A.; Rodriguez Bosca, S.; Ruiz-Martinez, A.; Sabatini, P.; Salt, J.; Sayago Galvan, I.; Soldevila, U.; Sanchez, J.; Torro Pastor, E.; Valero, A.; Valls Ferrer, J.A.; Villaplana Perez, M.; Vos, M. url  doi
openurl 
  Title Search for Higgs boson production in association with a high-energy photon via vector-boson fusion with decay into bottom quark pairs at root s=13 TeV with the ATLAS detector Type Journal Article
  Year 2021 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.  
  Volume (up) 03 Issue 3 Pages 268 - 37pp  
  Keywords Hadron-Hadron scattering (experiments); Higgs physics  
  Abstract A search is presented for the production of the Standard Model Higgs boson in association with a high-energy photon. With a focus on the vector-boson fusion process and the dominant Higgs boson decay into b-quark pairs, the search benefits from a large reduction of multijet background compared to more inclusive searches. Results are reported from the analysis of 132 fb(-1) of pp collision data at root s = 13 TeV collected with the ATLAS detector at the LHC. The measured Higgs boson signal yield in this final-state signature is 1.3 +/- 1.0 times the Standard Model prediction. The observed significance of the Higgs boson signal above the background is 1.3 standard deviations, compared to an expected significance of 1.0 standard deviations.  
  Address [Banerjee, S.; Dang, N. P.; Duvnjak, D.; Jackson, P.; Oliver, J. L.; Petridis, A.; Qureshi, A.; Sharma, A. S.; White, M. J.] Univ Adelaide, Dept Phys, Adelaide, SA, Australia  
  Corporate Author Thesis  
  Publisher Springer Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1029-8479 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000638157200001 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 4790  
Permanent link to this record
 

 
Author Sierra, D.A.; De Romeri, V.; Flores, L.J.; Papoulias, D.K. url  doi
openurl 
  Title Axionlike particles searches in reactor experiments Type Journal Article
  Year 2021 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.  
  Volume (up) 03 Issue 3 Pages 294 - 38pp  
  Keywords Beyond Standard Model; Neutrino Physics  
  Abstract Reactor neutrino experiments provide a rich environment for the study of axionlike particles (ALPs). Using the intense photon flux produced in the nuclear reactor core, these experiments have the potential to probe ALPs with masses below 10MeV. We explore the feasibility of these searches by considering ALPs produced through Primakoff and Compton-like processes as well as nuclear transitions. These particles can subsequently interact with the material of a nearby detector via inverse Primakoff and inverse Compton-like scatterings, via axio-electric absorption, or they can decay into photon or electron-positron pairs. We demonstrate that reactor-based neutrino experiments have a high potential to test ALP-photon couplings and masses, currently probed only by cosmological and astrophysical observations, thus providing complementary laboratory-based searches. We furthermore show how reactor facilities will be able to test previously unexplored regions in the similar to MeV ALP mass range and ALP-electron couplings of the order of gaee similar to 10(-8) as well as ALP-nucleon couplings of the order of g (1) ann similar to 10(-9), testing regions beyond TEXONO and Borexino limits.  
  Address [Aristizabal Sierra, D.] Univ Tecn Federico Santa Maria, Dept Fis, Casilla 110-V,Avda Espa 1680, Valparaiso, Chile, Email: daristizabal@ulg.ac.be;  
  Corporate Author Thesis  
  Publisher Springer Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1029-8479 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000636459500005 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 4793  
Permanent link to this record
 

 
Author HAWC Collaboration (Abeysekara, A.U. et al); Salesa Greus, F. url  doi
openurl 
  Title HAWC observations of the acceleration of very-high-energy cosmic rays in the Cygnus Cocoon Type Journal Article
  Year 2021 Publication Nature Astronomy Abbreviated Journal Nat. Astron.  
  Volume (up) 4 Issue Pages 465–471  
  Keywords  
  Abstract Cosmic rays with energies up to a few PeV are known to be accelerated within the Milky Way(1,2). Traditionally, it has been presumed that supernova remnants were the main source of these very-high-energy cosmic rays(3,4), but theoretically it is difficult to accelerate protons to PeV energies(5,6) and observationally there simply is no evidence of the remnants being sources of hadrons with energies above a few tens of TeV7,8. One possible source of protons with those energies is the Galactic Centre region(9). Here, we report observations of 1-100 TeV gamma rays coming from the 'Cygnus Cocoon'(10), which is a superbubble that surrounds a region of massive star formation. These gamma rays are likely produced by 10-1,000 TeV freshly accelerated cosmic rays that originate from the enclosed star-forming region Cyg OB2. Until now it was not known that such regions could accelerate particles to these energies. The measured flux likely originates from hadronic interactions. The spectral shape and the emission profile of the Cocoon changes from GeV to TeV energies, which reveals the transport of cosmic particles and historical activity in the superbubble.  
  Address [Abeysekara, A. U.; Hona, B.; Kieda, D.; Newbold, M.; Springer, R. W.] Univ Utah, Dept Phys & Astron, Salt Lake City, UT 84112 USA, Email: rdb3@stanford.edu;  
  Corporate Author Thesis  
  Publisher Nature Research Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2397-3366 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000627714400002 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 4763  
Permanent link to this record
 

 
Author Bourguille, B.; Nieves, J.; Sanchez, F. url  doi
openurl 
  Title Inclusive and exclusive neutrino-nucleus cross sections and the reconstruction of the interaction kinematics Type Journal Article
  Year 2021 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.  
  Volume (up) 04 Issue 4 Pages 004 - 42pp  
  Keywords Phenomenological Models  
  Abstract We present a full kinematic analysis of neutrino-nucleus charged current quasielastic interactions based on the Local Fermi Gas model and the Random Phase Approximation. The model was implemented in the NEUT Monte Carlo framework, which allows us to investigate potentially measurable observables, including hadron distributions. We compare the predictions simultaneously to the most recent T2K and MINERvA charged current (CC) inclusive, CC0 pi and transverse kinematic-imbalance variable results. We pursuit a microscopic interpretation of the relevant reaction mechanisms, with the aim to achieving in neutrino oscillation experiments a correct reconstruction of the incoming neutrino kinematics, free of conceptual biasses. Such study is of the utmost importance for the ambitious experimental program which is underway to precisely determine neutrino properties, test the three-generation paradigm, establish the order of mass eigenstates and investigate leptonic CP violation.  
  Address [Bourguille, B.] Univ Autonoma Barcelona, Inst Fis Altes Energies IFAE, Barcelona Inst Sci & Technol, Edifici Cn, Bellaterra, Barcelona, Spain, Email: bruno.bourguille@free.fr;  
  Corporate Author Thesis  
  Publisher Springer Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1029-8479 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000636427400001 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 4774  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records:
ific federMinisterio de Ciencia e InnovaciĆ³nAgencia Estatal de Investigaciongva